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PROBLEMS

1 Euler characteristics

1. Draw a graph on a sphere S2

in such a way that if two edges intersect then they intersect in a vertex of the graph.
Determine the number of vertices V , edges E and faces F for your graph. Then
compute the Euler characteristic χ(S2) = V − E + F .

2. Prove that the value of the Euler characteristic χ(S2) = V − E + F in Problem 1
does not depend on your particular choice of graph on the sphere. [See Lecture 1.]

3. A platonic solid is a 3-dimensional convex object whose surface is the union of a finite
number of polygonal planar faces satisfying:

(a) all faces are congruent to some fixed regular p-gon;

(b) the intersection of two faces is either empty or a common edge of the two faces
or a common vertex of the two faces;

(c) the same number of faces, q, meet at each vertex.

Five platonic solids are shown in the following figure.
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for any platonic solid.

4. Deduce from Problem 3 that there are only five platonic solids.

5. The digital image

represents a region X ⊆ R2 formed as a union of various unit squares [m,m + 1] ×
[n, n+ 1] for various integers m,n. Determine χ(X).

6. Draw a graph on a torus T

in such a way that

(a) if two edges of the graph intersect then they intersect in a vertex of the graph;

(b) each resulting face on the torus is a curvilinear disk (i.e. a “continuous defor-
mation” of some planar polygonal disk).

Determine the number of vertices V , edges E and faces F for your graph. Then com-
pute the Euler characteristic χ(T) = V −E+F . [The term “continuous deformation”
will be made precise later in the course: it is just a homeomorphism.]

7. Prove that the value of the Euler characteristic χ(T) = V −E+F in Problem 6 does
not depend on your particular choice of graph on the torus. [Hint: The torus T can
be constructed from a rectangular sheet of paper by identifying/gluing opposite sides
of the sheet. We know that the Euler characteristic of a solid plane recangle is 1.]

8. A polygonal surface is a union of curvilinear polygonal disks such that, if two polyg-
onal disks intersect, then their intersection is a union of edges and/or vertices of
the disks. The polygonal disks are called faces. The soccer ball is an example of a



polygonal surface with pentagonal and hexagonal faces. For any polygonal surface
X we define the Euler characteristic χ(X) = V − E + F where V is the number of
vertices on X, E the number of edges and F the number of faces.

Suppose that X is a polygonal surface. Let A,B ⊆ X be subsets of X each arising
as a union of faces. Prove that

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B).

[See Lecture 2.]

9. Use the formula χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B) to determine the Euler char-
acteristic of a double torus surface.

2 Euler Integration

1. The following picture shows the boundaries of several regions U1, . . . , Ut ⊆ R2 of
common Euler characteristic χ(Ui) = 1.

No two boundaries are tangential at any point. The numbers in the interiors of
the regions and their intersections represent the weight function ω:X → N where
X = U1 ∪ U2 ∪ . . . ∪ Ut and w(x) = |{i : x ∈ Ui}|. Evaluate the Euler integral∫

X

ω dχ



and then determine the number of regions t.

2. Let X ⊆ R2 be a region arising as the union of subregions U1, U2, . . . Ut ⊆ X of
common Euler characteristic χ(Ui) = C. Let ω:X → N be the weight function given
by w(x) = |{i : x ∈ Ui}|. Prove that

t =
1

C

∫
X

ω dχ .

[See Lecture 4.]

3 Möbius strips, Klein bottles ...

1. The torus T is obtained from the unit square [0, 1]×[0, 1] by making the identifications
(x, 0) = (x, 1) and (0, y) = (1, y) for x, y ∈ [0, 1].

Is it true that any loop in T that has no self intersections cuts T into two components?
If not, then exhibit a loop that does not cut T into two components. [See Lecture 4]

2. The Möbius strip M is obtained from the unit square [0, 1] × [0, 1] by making the
identifications (0, y) = (1, 1− y) for y ∈ [0, 1].

Is it true that any loop in M that has no self intersections cuts M into two compo-
nents? If not, then exhibit a loop that does not cut M into two components. [See
Lecture 4]

3. The cylinder X is obtained from the unit square [0, 1]× [0, 1] by making the identi-



fications (0, y) = (1, y) for y ∈ [0, 1].

Is it true that any loop in X that has no self intersections cuts X into two compo-
nents? If not, then exhibit a loop that does not cut X into two components.

4. The Klein bottle K is obtained from the unit square [0, 1] × [0, 1] by making the
identifications (x, 0) = (1− x, 1) and (0, y) = (1, y) for x, y ∈ [0, 1].

Is it true that any loop in K that has no self intersections cuts K into two components?
If not, then exhibit a loop that does not cut K into two components.

5. The projective plane P is obtained from the unit square [0, 1]× [0, 1] by making the
identifications (x, 0) = (1− x, 1) and (0, y) = (1, 1− y) for x, y ∈ [0, 1].

Is it true that any loop in P that has no self intersections cuts P into two components?
If not, then exhibit a loop that does not cut P into two components.

4 Subsets of Euclidean space

1. Exhibit a collection of open subsets of the plane E2 whose intersection is not open.
[Lecture 5]

2. Let X ⊂ E2 be the set of those points in the plane that have at least one rational
coordinate. Is X an open subset of E2? Is X a connected subset of E2? Justify your
answers.



3. Let
Y = {(0, y) ∈ E2 : −1 < y < 1} ,

Z = {(x, sin(1/x) ∈ E2 : 0 < x ≤ 1} ,

X = Y ∪ Z .

Is X an open subset of E2? Is X a connected subset of E2? Justify your answers.

5 Topological spaces

1. For each of the following sets X and collections T of open subsets decide if the pair
X,T satisfies the axioms of a topological space. If it does, determine whether X is
connected. If it is not a topological space then explain which axioms fail.

(a) X = Rn and the subset U ⊂ X is open if, for any x ∈ U , there is a real
ε > 0 such that the open Euclidean ball Bn(x, ε) of radius ε and centred at x is
contained in U .

(b) X = Rn and the subset U ⊂ X is open if, for any x ∈ X \ U , there is a real
ε > 0 such that the open Euclidean ball Bn(x, ε) of radius ε and centred at x is
contained in the complement X \ U .

(c) X = Rn and every subset U ⊂ X is open.

(d) X = Rn and the only open subsets are X and the empty set ∅.
(e) X = Z and a subset U ⊂ Z is open if and only if its complement Z \ U is finite

or U = ∅.
(f) X = Z and a subset U ⊂ Z is open if and only if U is finite or U = Z.

(g) X = Rn and a subset U ⊂ Rn is open if and only if it is a vector subspace of
Rn. Here Rn has the standard addition and scalar multiplication.

(h) X = {1, 2, 3, 4} and T = {∅, {2}, {1, 2}, {2, 3}, {1, 2, 3}, {1, 2, 3, 4}}.
(i) X = Z and a subset U ⊂ Z is open if and only if each of its elements is even.

6 Subspaces

1. Given a topological space X, define what it means for a subset Y ⊆ X to be a
subspace.

2. For each of the following topological spaces X and subspaces Y ⊆ X describe the
connected components of Y .

(a) X = E2, Y = {(x, y) ∈ E2 : x2 + y2 6= 1}.
(b) X = E1, Y = Q.



(c) X = E2, Y = {(x, y) ∈ E2 : x ∈ Z or y ∈ Z}.
(d) X = E2, Y = {(x, y) ∈ E2 : x ∈ Z and y ∈ Z}.

3. The table
H M R C W

H 0 11 10 14 22
M 11 0 3 13 21
R 10 3 0 12 20
C 14 13 12 0 16
W 22 21 20 16 0

gives distances between the species Human, Mouse, Rat, Cat, Whale. For ε > 0 let
Gε denote the graph with vertices H,M,R,C,W and with an edge between vertices
X and Y if dist(X, Y ) ≤ ε.

(a) Sketch the graphs G4, G10, G16.

(b) Explain how one can view the graphs Gε as subspaces of E5.

(c) Draw the dendrogram that describes the inclusion relationships between the
connected components of the subspaces G0, G2, G4, . . . , G18, G20.

7 Some useful jargon

1. Let X be a topological space and let W ⊆ X be some subset.

• The subset W is said to be closed if the complement X \W is an open subset
of X.

• A point x ∈ X is said to be a limit point of W if every open set U ⊂ X containing
x has non-empty intersection with W .

• The union of W and all its limit points in X is said to be the closure of W . The
closure is denoted by W .

(a) Prove that the closure W is a closed subset of X.

(b) Suppose that W ⊆ Z where Z is a closed subset of X. Prove that W ⊆ Z.

(c) Prove that W is equal to the intersection of all closed subsets of X containing
W .

(d) Prove that a subset W is closed if and only if W = W .

2. Find a family of closed subsets of the real line whose union is not closed.

3. Describe the closure of the subspace W = {(1/n) sin(n) : n = 1, 2, . . .} of the real
line.

4. Let Y be a subspace of X. Show that if A is closed in Y and if Y is closed in X then
A is closed in X.



8 Continuity

1. Give the definition of a continuous function between topological spaces.

2. Suppose that f :X → Y and g:Y → Z are continuous functions. Prove that the
composite gf :X → Z, x 7→ g(f(x)) is continuous.

3. Suppose that f :X → Y and g:Y → Z are homeomorphisms. Prove that the com-
posite gf :X → Z, x 7→ g(f(x)) is a homeomorphism.

The first in-class test will consist of a few of the above questions.

4. Prove that the unit circle S1 = {(x, y) ∈ E2 : x2 + y2 = 1} is homeomorphic to the
square Y = {(x, y) ∈ E2 : −2 ≤ x, y ≤ 2, and either x ∈ {−2, 2} or y ∈ {−2, 2}}.

5. Let ∆ denote an equilateral triangular region in the plane E2. Describe the construc-
tion of a continuous surjective function f : [0, 1] → ∆. (You are not asked to prove
any convergence nor to prove surjectivity.)

6. Prove that if X and Y are homeomorphic then X is connected if and only if Y is
connected.

7. Prove that (0, 1) is homeomorphic to E.

8. Prove that E is not homeomorphic to E2.

9. Prove that E is not homeomorphic to the space Y = {(x, y) ∈ E2 : x = 0 or y = 0}.
(Here Y is the union of the x-axis and y-axis.)

9 Compactness

1. Explain why E2 is not compact.

2. Prove that the interval [0, 1] is compact.

3. Prove that if X is compact and f :X → Y is a continuous map then the image of f
is compact.

4. Prove that if X is compact and Y is homeomorphic to X then Y is compact.

5. Determine the accumulation points of the subset A = {1/n}n=1,2,3,... of R.

6. Determine the accumulation points of the subset A = (0, 1) of R.

7. Prove that a subset A of a topological space X is closed if and only if it contains all
its accumulation points.



8. Describe a surjective continuous map f : [0, 1]→ ∆ where ∆ ⊂ E2 is a solid equilateral
triangle. Explain why f is surjective, stating clearly any theorems that you use in
your explanation.

9. Prove that a compact subset A of a Hausdorff space X is closed.

10 Simplicial complexes

1. Describe a triangulation on the torus. Determine the number of k-simplices in your
triangulation for k = 0, 1, 2 and then compute the Euler characteristic.

2. Determine the Euler characteristic of the Möbius band.

3. Determine the Euler characteristic of the sphere Sn = {x ∈ En+1 : ||x|| = 1} for
n = 1, 2, 3, ....

4. Describe a triangulation on the double torus.

Determine the number of k-simplices in your triangulation for k = 0, 1, 2 and then
compute the Euler characteristic.

The second in-class test will consist of a few of the above questions. Questions covered by
the first test might also appear on the second test.

11 Homotopy of maps

1. Let Y ⊂ En be an arbitrary convex subset of Euclidean space and let X be an
arbirary topological space. Prove that any two continuous maps f, g:X → Y are
homotopy equivalent.

2. Prove that homotopy equivalence of maps f ' g is an equivalence relation on the set
of continuous maps X → Y from a given space X to a given space Y .

3. Let f : [0, 1]→ S1 be a continuous map. Prove that there is a unique continuous map
f̃ : [0, 1]→ R such that f(t) = e(f̃(t)) where e:R→ S1, θ 7→ e2πθi.



4. Define the winding number of a map f :S1 → S1 with. Explain why homotopic maps
f ' g have the same winding number.

5. Let [S1, S1] denote the set of homotopy classes of maps S1 → S1. Describe a bijection

ω: [S1, S1]
∼=−→ Z. Explain why ω is onto. Explain why ω is injective.

6. State and prove the Fundamental Theorem of Algebra.

12 Homotopy equivalent spaces

1. Prove that any convext subspace Y ⊂ En is homotopy equivalent to the space con-
sisting of a single point.

2. Prove that the complex plane minus the origin C\{0} is homotopy equivalent to the
circle S1.

3. Prove that homotopy equivalence of maps f ' g is an equivalence relation on the set
of continuous maps X → Y from a given space X to a given space Y .

4. Use the fact that the Euler characteristic of a triangulable space is a homotopy
invariant to prover Brouwer’s fixed point theorem: any continuous map Dn → Dn

on the closed disc has at least one fixed point.

5. Prove the Frobenius-Perron Theorem: a real square matrix with positive entries has
a positive real eigenvalue and the corresponding eigenvector has positive components.

13 Nash Equilibrium

1. Describe what is meant by a Nash Equilibrium, explaining any concepts from Game
Theory that you use.

2. Use Brouwer’s fixed point theorem to prove the existence of a Nash equilibrium in a
mixed strategy game.


