MA342: Tutorial Problems 2014-15

Tuesday, 1-2pm, Venue = AC214
Wednesday, 2-3pm, Venue = AC201

Tutor: Adib Makroon

Tutorials:

PROBLEMS

1 Euler characteristics

1. Draw a graph on a sphere S?

in such a way that if two edges intersect then they intersect in a vertex of the graph.
Determine the number of vertices V', edges E and faces F' for your graph. Then
compute the Euler characteristic x(S*) =V — E + F.

2. Prove that the value of the Euler characteristic x(S?) = V — E + F in Problem 1
does not depend on your particular choice of graph on the sphere. [See Lecture 1.]

3. A platonic solid is a 3-dimensional convex object whose surface is the union of a finite
number of polygonal planar faces satisfying:

(a) all faces are congruent to some fixed regular p-gon;

(b) the intersection of two faces is either empty or a common edge of the two faces
or a common vertex of the two faces;

(c) the same number of faces, ¢, meet at each vertex.

Five platonic solids are shown in the following figure.
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Use the Euler characteristic to prove
1
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for any platonic solid.
. Deduce from Problem 3 that there are only five platonic solids.
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represents a region X C R? formed as a union of various unit squares [m,m + 1] x
[n,n 4 1] for various integers m, n. Determine y/(X).

0,

. Draw a graph on a torus T

in such a way that

(a) if two edges of the graph intersect then they intersect in a vertex of the graph;

(b) each resulting face on the torus is a curvilinear disk (i.e. a “continuous defor-
mation” of some planar polygonal disk).

Determine the number of vertices V', edges E and faces F' for your graph. Then com-
pute the Euler characteristic x(T) = V —E+F. [The term “continuous deformation”
will be made precise later in the course: it is just a homeomorphism.]

. Prove that the value of the Euler characteristic x(T) =V — E+ F in Problem 6 does
not depend on your particular choice of graph on the torus. [Hint: The torus T can
be constructed from a rectangular sheet of paper by identifying/gluing opposite sides
of the sheet. We know that the Euler characteristic of a solid plane recangle is 1.]

. A polygonal surface is a union of curvilinear polygonal disks such that, if two polyg-
onal disks intersect, then their intersection is a union of edges and/or vertices of
the disks. The polygonal disks are called faces. The soccer ball is an example of a



polygonal surface with pentagonal and hexagonal faces. For any polygonal surface
X we define the Fuler characteristic x(X) =V — E 4+ F where V is the number of
vertices on X, F the number of edges and F' the number of faces.

Suppose that X is a polygonal surface. Let A, B C X be subsets of X each arising
as a union of faces. Prove that

X(AU B) = x(4) + x(B) = x(AN B).
[See Lecture 2.]

9. Use the formula y(AU B) = x(A4) + x(B) — x(AN B) to determine the Euler char-

acteristic of a double torus surface.

-

2 Euler Integration

1. The following picture shows the boundaries of several regions Uj,...,U, C R? of
common Euler characteristic x(U;) = 1.

No two boundaries are tangential at any point. The numbers in the interiors of
the regions and their intersections represent the weight function w: X — N where
X=U,UU,U...UU; and w(z) = |{i : x € U;}|. Evaluate the Euler integral

/wdx
X



and then determine the number of regions t.

. Let X C R? be a region arising as the union of subregions U, Us,...U; C X of
common Euler characteristic x(U;) = C. Let w: X — N be the weight function given
by w(x) = |{i : x € U;}|. Prove that

1
t=— | wdy.
C/X“’X

[See Lecture 4.]

Mobius strips, Klein bottles ...

. The torus T is obtained from the unit square [0, 1] x [0, 1] by making the identifications
(2,0) = (x,1) and (0,y) = (1,y) for z,y € [0, 1].

Is it true that any loop in T that has no self intersections cuts T into two components?
If not, then exhibit a loop that does not cut T into two components. [See Lecture 4]

. The Mobius strip M is obtained from the unit square [0,1] x [0, 1] by making the
identifications (0,y) = (1,1 — y) for y € [0, 1].

Is it true that any loop in M that has no self intersections cuts M into two compo-
nents? If not, then exhibit a loop that does not cut M into two components. [See
Lecture 4]

. The cylinder X is obtained from the unit square [0, 1] x [0, 1] by making the identi-



fications (0,y) = (1,y) for y € [0, 1].

Is it true that any loop in X that has no self intersections cuts X into two compo-
nents? If not, then exhibit a loop that does not cut X into two components.

. The Klein bottle K is obtained from the unit square [0, 1] x [0,1] by making the
identifications (z,0) = (1 — z,1) and (0,y) = (1,y) for z,y € [0, 1].

Is it true that any loop in K that has no self intersections cuts K into two components?
If not, then exhibit a loop that does not cut K into two components.

. The projective plane P is obtained from the unit square [0, 1] x [0, 1] by making the
identifications (z,0) = (1 — x,1) and (0,y) = (1,1 —y) for z,y € [0, 1].

Is it true that any loop in P that has no self intersections cuts IP into two components?
If not, then exhibit a loop that does not cut P into two components.

Subsets of Euclidean space

. Exhibit a collection of open subsets of the plane E? whose intersection is not open.
[Lecture 5]

. Let X C E? be the set of those points in the plane that have at least one rational
coordinate. Is X an open subset of E2? Is X a connected subset of E?? Justify your
answers.



3. Let
Y ={(0,y) eE*: -1<y<1},

7 ={(z,sin(1/x) € E* : 0 <z < 1},
X=YUZ.

Is X an open subset of E2? Is X a connected subset of E2? Justify your answers.

5 Topological spaces

1. For each of the following sets X and collections T' of open subsets decide if the pair
X, T satisfies the axioms of a topological space. If it does, determine whether X is
connected. If it is not a topological space then explain which axioms fail.

(a) X = R"™ and the subset U C X is open if, for any = € U, there is a real
€ > 0 such that the open Euclidean ball B"(z,€) of radius € and centred at z is
contained in U.

(b) X = R™ and the subset U C X is open if, for any z € X \ U, there is a real
¢ > 0 such that the open Euclidean ball B™(x,¢€) of radius € and centred at z is
contained in the complement X \ U.

(¢) X =R™ and every subset U C X is open.
(d) X = R" and the only open subsets are X and the empty set ().

(e) X =7Z and a subset U C Z is open if and only if its complement Z \ U is finite
or U = ().

(f) X =Z and a subset U C Z is open if and only if U is finite or U = Z.

(g) X = R™ and a subset U C R" is open if and only if it is a vector subspace of
R™. Here R™ has the standard addition and scalar multiplication.

(h) X ={1,2,3,4} and T = {0, {2}, {1,2},{2,3},{1,2,3},{1,2,3,4}}.

(i) X =Z and a subset U C Z is open if and only if each of its elements is even.

6 Subspaces

1. Given a topological space X, define what it means for a subset ¥ C X to be a
subspace.

2. For each of the following topological spaces X and subspaces ¥ C X describe the
connected components of Y.

(a) X =FE% Y ={(x,y) € E? : 22 +y? #1}.
(b) X =E. Y = Q.



(¢) X=E2Y ={(v,y) €eE*: x € ZoryeZ}
(d) X =E*Y ={(z,y) €E* : x € Z and y € Z}.

. The table
H M R C W

0 11 10 14 22
11 0 3 13 21
10 3 0 12 20
14 13 12 0 16
22 .21 20 16 O

gives distances between the species Human, Mouse, Rat, Cat, Whale. For ¢ > 0 let
G denote the graph with vertices H, M, R, C; W and with an edge between vertices
X and Y if dist(X,Y) <.

(a) Sketch the graphs G4, Gho, G-

(b) Explain how one can view the graphs G, as subspaces of [E°.

=QxSH

(c) Draw the dendrogram that describes the inclusion relationships between the
connected components of the subspaces Go, Go, G4, . .., Gig, Gao.

Some useful jargon

. Let X be a topological space and let W C X be some subset.
e The subset W is said to be closed if the complement X \ W is an open subset
of X.

e A point z € X issaid to be a limit point of W if every open set U C X containing
x has non-empty intersection with W.

e The union of W and all its limit points in X is said to be the closure of W. The
closure is denoted by W.

(a) Prove that the closure W is a closed subset of X.
(b) Suppose that W C Z where Z is a closed subset of X. Prove that W C Z.

(c) Prove that W is equal to the intersection of all closed subsets of X containing
w.

(d) Prove that a subset W is closed if and only if W = W,

. Find a family of closed subsets of the real line whose union is not closed.

. Describe the closure of the subspace W = {(1/n)sin(n) : n = 1,2,...} of the real
line.

. Let Y be a subspace of X. Show that if A is closed in Y and if Y is closed in X then
A is closed in X.



Continuity

. Give the definition of a continuous function between topological spaces.

Suppose that f: X — Y and ¢g:Y — Z are continuous functions. Prove that the
composite gf: X — Z,x +— g(f(x)) is continuous.

Suppose that f: X — Y and ¢g:Y — Z are homeomorphisms. Prove that the com-
posite gf: X — Z,x +— g(f(x)) is a homeomorphism.

The first in-class test will consist of a few of the above questions.

4.

Prove that the unit circle S = {(z,y) € E? : 2? + y* = 1} is homeomorphic to the
square Y = {(x,y) € E* : —2 < x,y <2, and either z € {—2,2} or y € {—2,2}}.

Let A denote an equilateral triangular region in the plane E2. Describe the construc-
tion of a continuous surjective function f:[0,1] — A. (You are not asked to prove
any convergence nor to prove surjectivity.)

Prove that if X and Y are homeomorphic then X is connected if and only if YV is
connected.

Prove that (0, 1) is homeomorphic to E.
Prove that E is not homeomorphic to E?2.

Prove that E is not homeomorphic to the space Y = {(z,y) € E? : =0 or y = 0}.
(Here Y is the union of the z-axis and y-axis.)

Compactness

. Explain why E? is not compact.

Prove that the interval [0, 1] is compact.

Prove that if X is compact and f: X — Y is a continuous map then the image of f
is compact.

Prove that if X is compact and Y is homeomorphic to X then Y is compact.
Determine the accumulation points of the subset A = {1/n},—123.. of R.
Determine the accumulation points of the subset A = (0,1) of R.

Prove that a subset A of a topological space X is closed if and only if it contains all
its accumulation points.
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Describe a surjective continuous map f: [0, 1] — A where A C E? is a solid equilateral
triangle. Explain why f is surjective, stating clearly any theorems that you use in
your explanation.

Prove that a compact subset A of a Hausdorff space X is closed.

Simplicial complexes

. Describe a triangulation on the torus. Determine the number of k-simplices in your

triangulation for k = 0, 1,2 and then compute the Euler characteristic.

. Determine the Euler characteristic of the Mobius band.

Determine the Euler characteristic of the sphere S™ = {z € E"™' : ||z|| = 1} for
n=1,23,..

Describe a triangulation on the double torus.

~
-

Determine the number of k-simplices in your triangulation for £ = 0,1,2 and then
compute the Euler characteristic.

The second in-class test will consist of a few of the above questions. Questions covered by
the first test might also appear on the second test.
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Homotopy of maps

1. Let Y C E™ be an arbitrary convex subset of Euclidean space and let X be an

arbirary topological space. Prove that any two continuous maps f,g: X — Y are
homotopy equivalent.

Prove that homotopy equivalence of maps f ~ g is an equivalence relation on the set
of continuous maps X — Y from a given space X to a given space Y.

Let f:[0,1] — S ' be a continuous map. Prove that there is a unique continuous map
f:[0,1] = R such that f(t) = e(f(t)) where e:R — S, 0 — €27
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Define the winding number of a map f:S' — S! with. Explain why homotopic maps
f =~ g have the same winding number.

Let [S1, S'] denote the set of homotopy classes of maps S* — S!. Describe a bijection
w: [St, 81 =7 Explain why w is onto. Explain why w is injective.

State and prove the Fundamental Theorem of Algebra.

Homotopy equivalent spaces

. Prove that any convext subspace Y C E” is homotopy equivalent to the space con-

sisting of a single point.

Prove that the complex plane minus the origin C\ {0} is homotopy equivalent to the
circle S!.

Prove that homotopy equivalence of maps f ~ g is an equivalence relation on the set
of continuous maps X — Y from a given space X to a given space Y.

Use the fact that the Euler characteristic of a triangulable space is a homotopy
invariant to prover Brouwer’s fixed point theorem: any continuous map D" — D"
on the closed disc has at least one fixed point.

Prove the Frobenius-Perron Theorem: a real square matrix with positive entries has
a positive real eigenvalue and the corresponding eigenvector has positive components.

Nash Equilibrium

. Describe what is meant by a Nash Fquilibrium, explaining any concepts from Game

Theory that you use.

Use Brouwer’s fixed point theorem to prove the existence of a Nash equilibrium in a
mixed strategy game.



