MA342: Tutorial Problems 2014-15

Tutorials: Tuesday, 1-2pm, Venue = AC214Wednesday, 2-3pm, Venue = AC201

Tutor: Adib Makroon

PROBLEMS

1 Euler characteristics

1. Draw a graph on a sphere \mathbb{S}^2

in such a way that if two edges intersect then they intersect in a vertex of the graph. Determine the number of vertices V, edges E and faces F for your graph. Then compute the Euler characteristic $\chi(\mathbb{S}^2) = V - E + F$.

- 2. Prove that the value of the Euler characteristic $\chi(\mathbb{S}^2) = V E + F$ in Problem 1 does not depend on your particular choice of graph on the sphere. [See Lecture 1.]
- 3. A *platonic solid* is a 3-dimensional convex object whose surface is the union of a finite number of polygonal planar faces satisfying:
 - (a) all faces are congruent to some fixed regular *p*-gon;
 - (b) the intersection of two faces is either empty or a common edge of the two faces or a common vertex of the two faces;
 - (c) the same number of faces, q, meet at each vertex.

Five platonic solids are shown in the following figure.

Use the Euler characteristic to prove

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{2} + \frac{1}{e} \ , \qquad e \ge 0$$

for any platonic solid.

- 4. Deduce from Problem 3 that there are only five platonic solids.
- 5. The digital image

represents a region $X \subseteq \mathbb{R}^2$ formed as a union of various unit squares $[m, m+1] \times [n, n+1]$ for various integers m, n. Determine $\chi(X)$.

6. Draw a graph on a torus $\mathbb T$

in such a way that

- (a) if two edges of the graph intersect then they intersect in a vertex of the graph;
- (b) each resulting face on the torus is a curvilinear disk (*i.e.* a "continuous deformation" of some planar polygonal disk).

Determine the number of vertices V, edges E and faces F for your graph. Then compute the Euler characteristic $\chi(\mathbb{T}) = V - E + F$. [The term "continuous deformation" will be made precise later in the course: it is just a *homeomorphism*.]

- 7. Prove that the value of the Euler characteristic $\chi(\mathbb{T}) = V E + F$ in Problem 6 does not depend on your particular choice of graph on the torus. [Hint: The torus \mathbb{T} can be constructed from a rectangular sheet of paper by identifying/gluing opposite sides of the sheet. We know that the Euler characteristic of a solid plane recangle is 1.]
- 8. A *polygonal surface* is a union of curvilinear polygonal disks such that, if two polygonal disks intersect, then their intersection is a union of edges and/or vertices of the disks. The polygonal disks are called *faces*. The soccer ball is an example of a

polygonal surface with pentagonal and hexagonal faces. For any polygonal surface X we define the *Euler characteristic* $\chi(X) = V - E + F$ where V is the number of vertices on X, E the number of edges and F the number of faces.

Suppose that X is a polygonal surface. Let $A, B \subseteq X$ be subsets of X each arising as a union of faces. Prove that

$$\chi(A \cup B) = \chi(A) + \chi(B) - \chi(A \cap B).$$

[See Lecture 2.]

9. Use the formula $\chi(A \cup B) = \chi(A) + \chi(B) - \chi(A \cap B)$ to determine the Euler characteristic of a double torus surface.

2 Euler Integration

1. The following picture shows the boundaries of several regions $U_1, \ldots, U_t \subseteq \mathbb{R}^2$ of common Euler characteristic $\chi(U_i) = 1$.

No two boundaries are tangential at any point. The numbers in the interiors of the regions and their intersections represent the weight function $\omega: X \to \mathbb{N}$ where $X = U_1 \cup U_2 \cup \ldots \cup U_t$ and $w(x) = |\{i : x \in U_i\}|$. Evaluate the Euler integral

$$\int_X \omega \, d\chi$$

and then determine the number of regions t.

2. Let $X \subseteq \mathbb{R}^2$ be a region arising as the union of subregions $U_1, U_2, \ldots, U_t \subseteq X$ of common Euler characteristic $\chi(U_i) = C$. Let $\omega: X \to \mathbb{N}$ be the weight function given by $w(x) = |\{i: x \in U_i\}|$. Prove that

$$t = \frac{1}{C} \int_X \omega \, d\chi$$

[See Lecture 4.]

3 Möbius strips, Klein bottles ...

1. The torus \mathbb{T} is obtained from the unit square $[0, 1] \times [0, 1]$ by making the identifications (x, 0) = (x, 1) and (0, y) = (1, y) for $x, y \in [0, 1]$.

Is it true that any loop in \mathbb{T} that has no self intersections cuts \mathbb{T} into two components? If not, then exhibit a loop that does not cut \mathbb{T} into two components. [See Lecture 4]

2. The Möbius strip \mathbb{M} is obtained from the unit square $[0,1] \times [0,1]$ by making the identifications (0,y) = (1,1-y) for $y \in [0,1]$.

Is it true that any loop in M that has no self intersections cuts M into two components? If not, then exhibit a loop that does not cut M into two components. [See Lecture 4]

3. The cylinder X is obtained from the unit square $[0,1] \times [0,1]$ by making the identi-

fications (0, y) = (1, y) for $y \in [0, 1]$.

Is it true that any loop in X that has no self intersections cuts X into two components? If not, then exhibit a loop that does not cut X into two components.

4. The Klein bottle K is obtained from the unit square $[0,1] \times [0,1]$ by making the identifications (x,0) = (1-x,1) and (0,y) = (1,y) for $x, y \in [0,1]$.

Is it true that any loop in \mathbb{K} that has no self intersections cuts \mathbb{K} into two components? If not, then exhibit a loop that does not cut \mathbb{K} into two components.

5. The projective plane \mathbb{P} is obtained from the unit square $[0,1] \times [0,1]$ by making the identifications (x,0) = (1-x,1) and (0,y) = (1,1-y) for $x, y \in [0,1]$.

Is it true that any loop in \mathbb{P} that has no self intersections cuts \mathbb{P} into two components? If not, then exhibit a loop that does not cut \mathbb{P} into two components.

4 Subsets of Euclidean space

- 1. Exhibit a collection of open subsets of the plane \mathbb{E}^2 whose intersection is not open. [Lecture 5]
- 2. Let $X \subset \mathbb{E}^2$ be the set of those points in the plane that have at least one rational coordinate. Is X an open subset of \mathbb{E}^2 ? Is X a connected subset of \mathbb{E}^2 ? Justify your answers.

3. Let

$$Y = \{(0, y) \in \mathbb{E}^2 : -1 < y < 1\},\$$
$$Z = \{(x, \sin(1/x)) \in \mathbb{E}^2 : 0 < x \le 1\},\$$
$$X = Y \cup Z.$$

Is X an open subset of \mathbb{E}^2 ? Is X a connected subset of \mathbb{E}^2 ? Justify your answers.

5 Topological spaces

- 1. For each of the following sets X and collections T of open subsets decide if the pair X, T satisfies the axioms of a topological space. If it does, determine whether X is connected. If it is not a topological space then explain which axioms fail.
 - (a) $X = \mathbb{R}^n$ and the subset $U \subset X$ is open if, for any $x \in U$, there is a real $\epsilon > 0$ such that the open Euclidean ball $B^n(x, \epsilon)$ of radius ϵ and centred at x is contained in U.
 - (b) $X = \mathbb{R}^n$ and the subset $U \subset X$ is open if, for any $x \in X \setminus U$, there is a real $\epsilon > 0$ such that the open Euclidean ball $B^n(x, \epsilon)$ of radius ϵ and centred at x is contained in the complement $X \setminus U$.
 - (c) $X = \mathbb{R}^n$ and every subset $U \subset X$ is open.
 - (d) $X = \mathbb{R}^n$ and the only open subsets are X and the empty set \emptyset .
 - (e) $X = \mathbb{Z}$ and a subset $U \subset \mathbb{Z}$ is open if and only if its complement $\mathbb{Z} \setminus U$ is finite or $U = \emptyset$.
 - (f) $X = \mathbb{Z}$ and a subset $U \subset \mathbb{Z}$ is open if and only if U is finite or $U = \mathbb{Z}$.
 - (g) $X = \mathbb{R}^n$ and a subset $U \subset \mathbb{R}^n$ is open if and only if it is a vector subspace of \mathbb{R}^n . Here \mathbb{R}^n has the standard addition and scalar multiplication.
 - (h) $X = \{1, 2, 3, 4\}$ and $T = \{\emptyset, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}, \{1, 2, 3, 4\}\}.$
 - (i) $X = \mathbb{Z}$ and a subset $U \subset \mathbb{Z}$ is open if and only if each of its elements is even.

6 Subspaces

- 1. Given a topological space X, define what it means for a subset $Y \subseteq X$ to be a subspace.
- 2. For each of the following topological spaces X and subspaces $Y \subseteq X$ describe the connected components of Y.

(a)
$$X = \mathbb{E}^2, Y = \{(x, y) \in \mathbb{E}^2 : x^2 + y^2 \neq 1\}.$$

(b) $X = \mathbb{E}^1, Y = \mathbb{Q}.$

- (c) $X = \mathbb{E}^2$, $Y = \{(x, y) \in \mathbb{E}^2 : x \in \mathbb{Z} \text{ or } y \in \mathbb{Z}\}.$ (d) $X = \mathbb{E}^2$, $Y = \{(x, y) \in \mathbb{E}^2 : x \in \mathbb{Z} \text{ and } y \in \mathbb{Z}\}.$
- 3. The table

	H	M	R	C	W
Н	0	11	10	14	22
M	11	0	3	13	21
R	10	3	0	12	20
C	14	13	12	0	16
W	22	21	20	16	0

gives distances between the species Human, Mouse, Rat, Cat, Whale. For $\epsilon > 0$ let G_{ϵ} denote the graph with vertices H, M, R, C, W and with an edge between vertices X and Y if $dist(X, Y) \leq \epsilon$.

- (a) Sketch the graphs G_4 , G_{10} , G_{16} .
- (b) Explain how one can view the graphs G_{ϵ} as subspaces of \mathbb{E}^5 .
- (c) Draw the dendrogram that describes the inclusion relationships between the connected components of the subspaces $G_0, G_2, G_4, \ldots, G_{18}, G_{20}$.

7 Some useful jargon

- 1. Let X be a topological space and let $W \subseteq X$ be some subset.
 - The subset W is said to be *closed* if the complement $X \setminus W$ is an open subset of X.
 - A point $x \in X$ is said to be a *limit point* of W if every open set $U \subset X$ containing x has non-empty intersection with W.
 - The union of W and all its limit points in X is said to be the *closure* of W. The closure is denoted by \overline{W} .
 - (a) Prove that the closure \overline{W} is a closed subset of X.
 - (b) Suppose that $W \subseteq Z$ where Z is a closed subset of X. Prove that $\overline{W} \subseteq Z$.
 - (c) Prove that \overline{W} is equal to the intersection of all closed subsets of X containing W.
 - (d) Prove that a subset W is closed if and only if $W = \overline{W}$.
- 2. Find a family of closed subsets of the real line whose union is not closed.
- 3. Describe the closure of the subspace $W = \{(1/n)\sin(n) : n = 1, 2, ...\}$ of the real line.
- 4. Let Y be a subspace of X. Show that if A is closed in Y and if Y is closed in X then A is closed in X.

8 Continuity

- 1. Give the definition of a continuous function between topological spaces.
- 2. Suppose that $f: X \to Y$ and $g: Y \to Z$ are continuous functions. Prove that the composite $gf: X \to Z, x \mapsto g(f(x))$ is continuous.
- 3. Suppose that $f: X \to Y$ and $g: Y \to Z$ are homeomorphisms. Prove that the composite $gf: X \to Z, x \mapsto g(f(x))$ is a homeomorphism.

The first in-class test will consist of a few of the above questions.

- 4. Prove that the unit circle $S^1 = \{(x, y) \in \mathbb{E}^2 : x^2 + y^2 = 1\}$ is homeomorphic to the square $Y = \{(x, y) \in \mathbb{E}^2 : -2 \le x, y \le 2, \text{ and either } x \in \{-2, 2\} \text{ or } y \in \{-2, 2\}\}.$
- 5. Let Δ denote an equilateral triangular region in the plane \mathbb{E}^2 . Describe the construction of a continuous surjective function $f: [0, 1] \to \Delta$. (You are *not* asked to prove any convergence nor to prove surjectivity.)
- 6. Prove that if X and Y are homeomorphic then X is connected if and only if Y is connected.
- 7. Prove that (0,1) is homeomorphic to \mathbb{E} .
- 8. Prove that \mathbb{E} is not homeomorphic to \mathbb{E}^2 .
- 9. Prove that \mathbb{E} is not homeomorphic to the space $Y = \{(x, y) \in \mathbb{E}^2 : x = 0 \text{ or } y = 0\}$. (Here Y is the union of the x-axis and y-axis.)

9 Compactness

- 1. Explain why \mathbb{E}^2 is not compact.
- 2. Prove that the interval [0, 1] is compact.
- 3. Prove that if X is compact and $f: X \to Y$ is a continuous map then the image of f is compact.
- 4. Prove that if X is compact and Y is homeomorphic to X then Y is compact.
- 5. Determine the accumulation points of the subset $A = \{1/n\}_{n=1,2,3,\dots}$ of \mathbb{R} .
- 6. Determine the accumulation points of the subset A = (0, 1) of \mathbb{R} .
- 7. Prove that a subset A of a topological space X is closed if and only if it contains all its accumulation points.

- 8. Describe a surjective continuous map $f: [0, 1] \to \Delta$ where $\Delta \subset \mathbb{E}^2$ is a solid equilateral triangle. Explain why f is surjective, stating clearly any theorems that you use in your explanation.
- 9. Prove that a compact subset A of a Hausdorff space X is closed.

10 Simplicial complexes

- 1. Describe a triangulation on the torus. Determine the number of k-simplices in your triangulation for k = 0, 1, 2 and then compute the Euler characteristic.
- 2. Determine the Euler characteristic of the Möbius band.
- 3. Determine the Euler characteristic of the sphere $S^n = \{x \in \mathbb{E}^{n+1} : ||x|| = 1\}$ for $n = 1, 2, 3, \dots$
- 4. Describe a triangulation on the double torus.

Determine the number of k-simplices in your triangulation for k = 0, 1, 2 and then compute the Euler characteristic.

The second in-class test will consist of a few of the above questions. Questions covered by the first test might also appear on the second test.

11 Homotopy of maps

- 1. Let $Y \subset \mathbb{E}^n$ be an arbitrary convex subset of Euclidean space and let X be an arbitrary topological space. Prove that any two continuous maps $f, g: X \to Y$ are homotopy equivalent.
- 2. Prove that homotopy equivalence of maps $f \simeq g$ is an equivalence relation on the set of continuous maps $X \to Y$ from a given space X to a given space Y.
- 3. Let $f: [0,1] \to S^1$ be a continuous map. Prove that there is a unique continuous map $\tilde{f}: [0,1] \to \mathbb{R}$ such that $f(t) = e(\tilde{f}(t))$ where $e: \mathbb{R} \to S^1, \theta \mapsto e^{2\pi\theta \mathbf{i}}$.

- 4. Define the winding number of a map $f: S^1 \to S^1$ with. Explain why homotopic maps $f \simeq g$ have the same winding number.
- 5. Let $[S^1, S^1]$ denote the set of homotopy classes of maps $S^1 \to S^1$. Describe a bijection $\omega: [S^1, S^1] \xrightarrow{\cong} \mathbb{Z}$. Explain why ω is onto. Explain why ω is injective.
- 6. State and prove the Fundamental Theorem of Algebra.

12 Homotopy equivalent spaces

- 1. Prove that any convext subspace $Y \subset \mathbb{E}^n$ is homotopy equivalent to the space consisting of a single point.
- 2. Prove that the complex plane minus the origin $\mathbb{C} \setminus \{0\}$ is homotopy equivalent to the circle S^1 .
- 3. Prove that homotopy equivalence of maps $f \simeq g$ is an equivalence relation on the set of continuous maps $X \to Y$ from a given space X to a given space Y.
- 4. Use the fact that the Euler characteristic of a triangulable space is a homotopy invariant to prover Brouwer's fixed point theorem: any continuous map $D^n \to D^n$ on the closed disc has at least one fixed point.
- 5. Prove the Frobenius-Perron Theorem: a real square matrix with positive entries has a positive real eigenvalue and the corresponding eigenvector has positive components.

13 Nash Equilibrium

- 1. Describe what is meant by a *Nash Equilibrium*, explaining any concepts from Game Theory that you use.
- 2. Use Brouwer's fixed point theorem to prove the existence of a Nash equilibrium in a mixed strategy game.