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1.

(a) A function A is defined for x > 2 by

A(x) =

∫x
2

√
et dt.

i. What is A ′(4)?
ii. What is A ′′(4)?

(b) Evaluate the following integrals.

i.

∫
ex cos(2x)dx ii.

∫
7x− 24

x2 − 6x+ 8
dx iii.

∫∞
2

xe−x2

dx

2.

(a) Give an example of
i. A subset of R whose cardinality is 3;

ii. An infinite subset of R that is bounded;
iii. A countable subset of R that is bounded above but not below;
iv. A (non-empty) bounded subset of R that has neither a maximum element

nor a minimum element.
(b) State what it means for an infinite set to be countable.

Who first proved that the set of real numbers is not countable?

(c) Let S =

{
2n+ 4

3n
: n ∈ Z, n > 1

}
.

i. List four elements of S.
ii. Identify, with explanation, the maximum element of S.

iii. Show that S has no minimum element, and determine the infimum of S.

3.

(a) State whether each of the following assertions is true or false:
i. Every unbounded sequence of real numbers is divergent;
ii. Every increasing sequence of real numbers is unbounded;

iii. If a sequence of real numbers is bounded and convergent, then it is monotonic;
iv. If a sequence of real numbers is bounded and monotonic, then it is convergent.

(b) State what it means for a sequence (an)
∞
n=1 of real numbers to converge. Deter-

mine whether the following sequences converge:

i. (cosn)∞n=1 ii.

(
1

n
sinn

)∞
n=1

(c) A sequence (an)
∞
n=1 of real numbers is defined by

a1 = 6, an =
1

4
(2an−1 − 3) for n > 2.

i. Write down the first four terms of the sequence.
ii. Show that the sequence is bounded below by −3

2
.

iii. Show that the sequence is monotonically decreasing.
iv. State why it can be deduced that the sequence is convergent, and determine

its limit.
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4.

(a) Use symbols to write down the logical form of the following argument, then decide
whether the argument structure is valid or invalid:

You wear a hat if and only if you wear a tie.
If you wear a hat then you won’t wear a jacket.
Therefore you either wear a jacket or you wear a tie, but not both.

(b) (i) Name and define the three properties a relation R on a set S must have to
be an equivalence relation. (ii) Show that the relation R defined on the set S =
{1, 2, 3, . . . , 16} as the set of pairs

R = {(m,n) ∈ S× S : m = 2kn for some integer k}

is an equivalence relation. (iii) Determine the equivalence classes of the elements
1, 2 and 3. (iv) Into how many distinct equivalence classes does this relation R
partition the set S?

5.

(a) (i) What is the order of a permutation π, what is its sign, and how can they be
determined from π? (ii) Write the permutation

π =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
10 2 11 3 12 9 8 13 5 1 14 6 7 4

)
as a product of disjoint cycles. Hence find the order and the sign of π.

(b) (i) Find the quotient and the remainder when the polynomial x5+x+1 is divided
by the polynomial x3 − x2 − 1. (ii) Find the irreducible factors of the polynomial
x3 − 5x2 + 3x+ 1 in Z11[x].

6.

(a) State the Principle of Induction. Use it to prove that

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
for all natural numbers n.

(b) Let

A =

 6 −8 8
0 6 0
8 −8 6

 .
(i) Find the characteristic polynomial pA(λ) of the matrix A. (ii) Determine the
eigenvalues of A. (iii) Find an eigenvector of A for the eigenvalue 6.


