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ABSTRACT
In this paper we report on an experience communicating be-
tween the GAP computional algebra system (in particular,
its HAP package for homological algebra computations) and
the Kenzo computer system for Algebraic Topology. Both
systems were made to cooperate through an OpenMath link
in order to perform computations in group cohomology. Fur-
thermore, once HAP output is integrated into Kenzo, it can
be used to compute more complicated algebraic invariants
such as the homology groups of various 2-types.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communica-
tions Applications; G.4 [Mathematics of Computing]:
Mathematical software

General Terms
Group Cohomology, Interoperability, OpenMath, GAP, Kenzo

1. INTRODUCTION
The GAP [1] computer algebra system is well-known for its
contributions to Computational Group Theory. Kenzo [5]
is a more specific system, developed by Sergeraert to im-
plement his ideas on Constructive Algebraic Topology [13].
One area where Group Theory and Algebraic Topology meet
is in the definition and calculation of the (co)homology of
groups. Any textbook on the subject (such as Brown’s book
[4]) stresses this fact: the natural way to define the homol-
ogy of a group G is to identify it with the homology of a
canonical topological space K(G, 1) associated with G. It
is quite common for Algebraic Topology to appear only in
this first, definitional, step. Textbooks often continue with a
more algebraic approach based on the notion of a resolution.

∗Dedicated to the memory of Mirian Andrés

One reason for this distancing from Algebraic Topology could
be that the subject is generally considered to be far from
the explicit computations needed when dealing with homol-
ogy of groups. However, the Kenzo system has dramati-
cally changed this view in recent years. One can now han-
dle complex simplicial spaces on a computer, applying high
level constructors (such as fibrations, loop spaces, classify-
ing spaces, and so on), and then compute their homology
groups.

The second author is currently developping the HAP [6]
package for homological algebra programming in GAP; this
is aimed initially at the computation of group (co)homology.
In particular, it implements various algorithms for comput-
ing free resolutions for a wide variety of groups. A natural
question comes to the mind: could HAP and Kenzo coop-
erate in computations where homology of groups is needed?
This paper gives a positive answer to the question.

The main contributions of the paper are: (1) an imple-
mented algorithm for computing, from a small free reso-
lution of a group G, the effective homology of the space
K(G, 1); and (2) an OpenMath description of groups and
free resolutions which can be exported from GAP [15], and
then imported by Kenzo.

A consequence of these contributions is that, once the effec-
tive homology of K(G, 1) is built as a Kenzo object, it can
then be applied in computations involving more complicated
spaces constructed from K(G, 1) (for instance, spaces aris-
ing as fibrations with base or fibre equal to K(G, 1)). Two
such applications are presented in the paper.

The paper is organized as follows. The next section contains
background material on: homology of groups, the effective
homology technique underlying Kenzo, and the GAP, HAP
and Kenzo systems. The main algorithm (constructing the
effective homology of a K(G, 1) from a small resolution of
the group G) is described in Section 3. Then, Section 4 deals
with OpenMath issues. Section 5 is devoted to applications
and examples. The paper ends with a section of conclusions
and the bibliography.



2. PRELIMINARIES
2.1 Some fundamental notions about homol-

ogy of groups
The following definitions and important results about ho-
mology of groups can be found in [8] and [4].

Definition 1. Given a ring R, a chain complex of R-modules
is a pair of sequences C∗ = (Cn, dn)n∈Z where, for each de-
gree n ∈ Z, Cn is an R-module and dn : Cn → Cn−1

(the differential map) is an R-module morphism such that
dn−1 ◦ dn = 0 for all n.

Definition 2. Let C∗ = (Cn, dn)n∈Z be a chain complex
of R-modules, with R a general ring. For each degree n ∈ Z,
the nth homology module of C∗ is defined to be the quotient
module Hn(C∗) = Ker dn/ Im dn+1. A chain complex C∗ is
acyclic if Hn(C∗) = 0 for all n.

Definition 3. Let G be a group and ZG the free Z-module
generated by the elements of G. The multiplication in G
extends uniquely to a Z-bilinear product ZG × ZG → ZG
which makes ZG a ring. This is called the integral group
ring of G.

Definition 4. A resolution F∗ for a group G is an acyclic
chain complex of ZG-modules

· · · −→ F2
d2−→ F1

d1−→ F0
ε−→ F−1 = Z −→ 0

where F−1 = Z is considered a ZG-module with the trivial
action and Fi = 0 for i < −1. The map ε : F0 → F−1 = Z
is called the augmentation. If Fi is free for each i ≥ 0, then
F∗ is said to be a free resolution.

Given a free resolution F∗, one can consider the chain com-
plex of Z-modules (that is to say, Abelian groups) C∗ =
(Cn, dCn)n∈N defined by

Cn = (Z⊗ZG F∗)n, n ≥ 0

(where Z ≡ C∗(Z, 0) is the chain complex with only one
non-null ZG-module in dimension 0) with differential maps
dCn : Cn → Cn−1 induced by dn : Fn → Fn−1.

Let us emphasize the difference between the chain complexes
F∗ and C∗ = Z ⊗ZG F∗. The elements of Fn (n ≥ 0) can
be seen as words

P
λi(gi, zi) where λi ∈ Z, gi ∈ G and zi

is a generator of Fn (which is a free ZG-module). On the
other hand, the associated chain complex C∗ = Z⊗ZG F∗ of
Abelian groups has elements in degree n of the form

P
λizi

with λi ∈ Z and zi is a generator of the free Z-module Cn.

Although the chain complex of ZG-modules F∗ is acyclic,
C∗ = Z ⊗ZG F∗ is in general not exact and its homology
groups are thus not null. An important result in homology of
groups claims that these homology groups are independent
of the chosen resolution for G.

Theorem 1. [4] Let G be a group and F∗, F ′
∗ two free

resolutions of G. Then

Hn(Z⊗ZG F∗) ∼= Hn(Z⊗ZG F ′
∗) for all n ∈ N

The hypothesis that F and F ′ are free can in fact be relaxed;
it suffices for the modules F and F ′ to be projective. This
theorem leads to the following definition.

Definition 5. Given a group G, the homology groups Hn(G)
are defined as

Hn(G) = Hn(Z⊗ZG F∗), n ∈ N

where F∗ is any free (or projective) resolution for G.

Given a group G, how can we determine a free resolution
F∗? One approach is to consider the bar resolution B∗ =
Bar∗(G) [8] whose associated chain complex Z ⊗ZG B∗ can
be viewed as the Eilenberg-MacLane space K(G, 1) (see [4]
for details). The homology groups of K(G, 1) are those of
the group G and this space has a big structural richness.
But it has a serious drawback: its size. If n > 1, then
K(G, 1)n = Gn. In particular, if G = Z, the space K(G, 1) is
infinite. This fact is an important obstacle to using K(G, 1)
as a means for computing the homology groups of G. It
would be convenient to construct smaller resolutions.

For some particular cases, small (or minimal) resolutions can
be directly constructed. For instance, let G be the cyclic
group of order m with generator t. The resolution F∗ for G

· · · t−1−→ ZG
N−→ ZG

t−1−→ ZG−→Z −→ 0

where N denotes the norm element 1+ t+ · · ·+ tm−1 of ZG,
produces the chain complex of Abelian groups

· · · 0−→ Z m−→ Z 0−→ Z −→ 0

and therefore

Hi(G) =

8<
:

Z if i = 0
Z/mZ if i is odd
0 if i is even, i > 0

In general it is not so easy to obtain a resolution for a
group G. As we will see in Section 2.3, the GAP package
HAP has been designed as a tool for constructing resolutions
for a wide variety of groups.

2.2 Effective homology
We now present the general ideas of the effective homology
method. See [13] and [14] for more details.

Definition 6. A reduction ρ between two chain complexes
C∗ = (Cn, dCn)n∈N and D∗ = (Dn, dDn)n∈N (which is de-
noted ρ : C∗⇒⇒D∗) is a triple (f, g, h) where: (a) the com-
ponents f and g are chain complex morphisms f : C∗ → D∗
and g : D∗ → C∗; (b) the component h is a homotopy
operator h : C∗ → C∗+1 (a graded group morphism of de-
gree +1); (c) the following relations are satisfied: fg = IdD;
dCh + hdC = IdC −gf ; fh = 0; hg = 0; hh = 0.

These relations express that C∗ is the direct sum of D∗ and
an acyclic complex. This decomposition is simply C∗ =
Ker f ⊕ Im g, with Im g ∼= D∗ and H∗(Ker f) = 0. In partic-
ular, this implies that the graded homology groups H∗(C∗)
and H∗(D∗) are canonically isomorphic.



A reduction is in fact a particular case of chain equivalence
in the classical sense (see [8]), where the homotopy operator
on the chain complex D∗ is the null map.

Definition 7. A (strong chain) equivalence ε between two
chain complexes C∗ and D∗, denoted by ε : C∗⇐⇐⇒⇒D∗, is a
triple (B∗, ρ1, ρ2) where B∗ is a chain complex, and ρ1 and
ρ2 are reductions ρ1 : B∗⇒⇒C∗ and ρ2 : B∗⇒⇒D∗.

Remark 1. We need the notion of effective chain com-
plex: it is essentially a free chain complex C∗ where each
group Cn is finitely generated, and a provided algorithm re-
turns a (distinguished) Z-basis in each degree n; in partic-
ular, its homology groups are elementarily computable (for
details, see [13]).

Definition 8. An object with effective homology X is a
quadruple (X, C∗(X), HC∗, ε) where C∗(X) is a chain com-
plex canonically associated with X (which allows us to study
the homological nature of X), HC∗ is an effective chain com-
plex, and ε is an equivalence ε : C∗(X)⇐⇐⇒⇒HC∗.

It is important to understand that in general the HC∗ com-
ponent of an object with effective homology is not made of
the homology groups of X; this component HC∗ is a free
Z-chain complex of finite type, in general with a non-null
differential, whose homology groups H∗(HC∗) can be de-
termined by means of an elementary algorithm. From the
equivalence ε one can deduce the isomorphism H∗(X) :=
H∗(C∗(X)) ∼= H∗(HC∗), which allows one to compute the
homology groups of the initial space X.

In this way, the notion of object with effective homology
makes it possible to compute homology groups of compli-
cated spaces by means of homology groups of effective com-
plexes. The effective homology technique is based on the
following idea: given some topological spaces X1, . . . , Xn, a
topological constructor Φ produces a new topological space X.
If effective homology versions of the spaces X1, . . . , Xn are
known, then one should be able to build an effective homol-
ogy version of the space X, and this version would allow us
to compute the homology groups of X.

A typical example of this kind of situation is the loop space
constructor. Given a 1-reduced simplicial set X with effec-
tive homology, it is possible to determine the effective homol-
ogy of the loop space Ω(X), which in particular allows one to
compute the homology groups H∗(Ω(X)). Moreover, if X is
m-reduced, this process may be iterated m times, producing
an effective homology version of Ωk(X), for k ≤ m. Effec-
tive homology versions are also known for classifying spaces
or total spaces of fibrations, see [14] for more information.

These ideas suggest that the effective homology technique
should have a role in the computation of the homology of a
group G. To this end, we consider the Eilenberg-MacLane
space K(G, 1), whose homology groups coincide with those
of G. The size of this space makes it difficult to calculate
the groups in a direct way, but it is possible to operate with
this simplicial set making use of the effective homology tech-
nique: if we construct the effective homology of K(G, 1) then

we would be able to efficiently compute the homology groups
of K(G, 1), which are those of G. Furthermore, it should
be possible to extend many group theoretic constructions
to effective homology constructions of Eilenberg-MacLane
spaces. We thus introduce the following definition.

Definition 9. A group G is a group with effective homology
if K(G, 1) is a simplicial set with effective homology.

The problem is, given a group G, how can we determine the
effective homology of K(G, 1)? If the group G is finite, the
simplicial set K(G, 1) is effective too, so that it has trivial
effective homology. However, the enormous size of this space
makes it difficult to obtain real calculations, and therefore
we will try to obtain an equivalence C∗(K(G, 1))⇐⇐⇒⇒E∗
where E∗ is effective and (much) smaller than the initial
complex. The main result of this paper, presented in Sec-
tion 3, is an algorithm that computes this equivalence from
a resolution of G.

2.3 Kenzo, GAP and HAP
GAP and Kenzo are two different programs devoted to Sym-
bolic Computation, which up to now have followed separate
paths and have little functionality in common.

One the one hand, Kenzo [5] is a Common Lisp program de-
voted to Symbolic Computation in Algebraic Topology. It
was developed by Francis Sergeraert and some co-workers,
and makes use of the effective homology method to deter-
mine homology groups of complicated spaces; it has obtained
some results (for example homology groups of iterated loop
spaces of a loop space modified by a cell attachment, com-
ponents of complex Postnikov towers, etc.) which had never
been determined before. In principle Kenzo is not intended
to compute homology of groups and it does not know what
a resolution is, although it implements Eilenberg-MacLane
spaces K(G, n) for every n but only for G = Z and G = Z2.

On the other hand, GAP [1] is a system for computational
discrete algebra with particular emphasis on Computational
Group Theory. In our work we focus attention on the HAP
homological algebra library for use with GAP (written by
the second author of the paper and still under develop-
ment). The initial focus of HAP is on computations related
to the cohomology of groups. A range of finite and infinite
groups are handled, with particular emphasis on integral
coefficients. It also contains some functions for the inte-
gral (co)homology of: Lie rings, Leibniz rings, cat-1-groups
and digital topological spaces. In particular, HAP allows
one to obtain (small) resolutions of many different groups,
but it does not implement the bar resolution nor Eilenberg-
MacLane spaces K(G, 1).

In this work, we try to relate both systems: we implement
the spaces K(G, 1) in Kenzo for other groups G and then
take a resolution from HAP to determine its effective homol-
ogy. This will make it possible to determine the homology
groups of G and make use of K(G, 1) (in an effective way)
in other constructions.



3. AN ALGORITHM CONSTRUCTING THE
EFFECTIVE HOMOLOGY OF A GROUP
FROM A RESOLUTION

Let us suppose that G is a group and a (small) free ZG-
resolution

· · · −→ F2
d2−→ F1

d1−→ F0
ε−→ F−1 = Z −→ 0

is provided. Furthermore, let us assume that the resolu-
tion F∗ is given with a contracting homotopy, that is to say,
Abelian group morphisms hn : Fn → Fn+1 for each n ≥ −1
(in general not compatible with the G-action), such that

εh−1 = IdZ

h−1ε + d1h0 = IdF0

hi−1di + di+1hi = IdFi , i > 0.

We also consider the bar resolution B∗ = Bar∗(G) for G
with augmentation ε′ and contracting homotopy h′. (See [4]
for details about the definition of these maps.)

As B∗ and F∗ are free resolutions for G, it is well known [4]
that one can construct a morphism of chain complexes of
ZG-modules f : B∗ → F∗ (compatible with the augmenta-
tions ε and ε′), and such that f is a homotopy equivalence.
The explicit definition of this morphism can be found in [4]
and is recalled here.

For degree −1 we consider f−1 = Id : Z → Z. For each
n ≥ 0 we take {un

α}α a ZG-basis of Bn (which is a free
ZG-module), and then we give a definition of fn over each
generator un

α. This definition is then extended by linearity
over all elements of Bn, which implies that each fn is a
morphism of ZG-modules.

First of all, f0 is given by

f0(u
0
α) = h−1ε

′(u0
α)

Once we have defined fn−1 : Bn−1 → Fn−1, we consider

fn(un
α) = hn−1fn−1dn(un

α)

In a similar way, one can construct an augmentation-preserving
morphism of chain complexes of ZG-modules g : F∗ → B∗
given by

g−1 = Id : Z → Z

g0(v
0
α) = h′−1ε(v

0
α)

gn(vn
α) = h′n−1gn−1dn(vn

α), n ≥ 1

where {vn
α}α is a basis of the ZG-module Fn.

In order to prove that f and g are homotopy equivalences,
we construct graded morphisms of ZG-modules

k : F∗ → F∗+1, k′ : B∗ → B∗+1

such that dF k+kdF = IdF −fg and dBk′+k′dB = IdB −gf .

The explicit expressions are not included in the classical
texts about this subject but are not difficult to deduce. For
degree −1, k−1 : Z → F0 is the null map. For n ≥ 0, the

homotopy operator k can be defined inductively (over the
generators of each ZG-module Fn) as

k0(v
0
α) = h0(v

0
α)− h0f0g0(v

0
α)

kn(vn
α) = hn(IdFn −fngn − kn−1dn)(vn

α)

It is not hard to prove then that dn+1kn+kn−1dn = IdFn −fngn

for every n ≥ 0. Analogously we can define k′ : B∗ → B∗+1

satisfying dBk′ + k′dB = IdB −gf .

We have therefore a homotopy equivalence (in the classical
sense):

B∗

k′

�� f

++
F∗

g

kk

k

��

where the four components f , g, k and k′ are compatible
with the action of the group G.

If we now apply the functor Z⊗ZG −, which is additive, we
obtain an equivalence of chain complexes (of Z-modules):

Z⊗ZG B∗

k′

�� f
--
Z⊗ZG F∗

g
mm

k

��

and both chain complexes provide us the homology of the
initial group G, that is,

H∗(Z⊗ZG B∗) ∼= H∗(Z⊗ZG F∗) ≡ H∗(G)

In order to obtain a strong chain equivalence (in other words,
a pair of reductions, following the framework of effective ho-
mology), we make use of the mapping cylinder construction.

Let us consider now a“general”chain equivalence of Z-modules

A∗

h

�� f

++
B∗

g

kk

k

��

where f : A∗ → B∗ and g : B∗ → A∗ are chain complex
morphisms and h : A∗ → A∗+1 and k : B∗ → B∗+1 are
graded group morphisms such that

gf = IdA−dAh− hdA; fg = IdB −dBk − kdB

The mapping cylinder Cylinder(f)∗ ≡ C∗ is a chain complex
with Cn = An−1 ⊕ Bn ⊕ An and differential map given by
the matrix

DC =

2
4
−dA 0 0
f dB 0
−1 0 dA

3
5

that is to say, dC(an−1, bn, an) = (−dA(an−1), f(an−1) +
dB(bn),−an−1 + dA(an)).

A reduction ρB : Cylinder(f)∗⇒⇒B∗ can be constructed for
every chain map f (not necessarily a homotopy equivalence),
where ρB = (FB , GB , HB) with

FB(an−1, bn, an) = bn + f(an)

GB(bn) = (0, bn, 0)

HB(an−1, bn, an) = (−an, 0, 0)



The difficult part of the required strong equivalence is the
construction of a reduction ρA : Cylinder(f)∗⇒⇒A∗, where
we should use the fact that f is a homotopy equivalence, in
other words, we should take into account the components g,
h and k. The formulas for the three elements of the reduction
ρA = (FA, GA, HA) can be deduced from [3]; they are given
concretely by the matrices

FA =
�
−h g 1

�

GA =

2
4

0
0
1

3
5

HA =

2
4

−h− gkf + gfh g 0
−kkf + kfh k 0

−hh− hgkf + hgfh + gkkf − gkfh hg − gk 0

3
5

One can prove that these maps satisfy the equations FAGA =
IdA and GAFA = IdC −dCHA −HAdC , so that we obtain a
reduction ρA : C∗ = Cylinder(f)∗⇒⇒A∗.

Considering now our reductions ρB : Cylinder(f)∗⇒⇒B∗
and ρA : Cylinder(f)∗⇒⇒A∗ we obtain a strong chain equiv-
alence

A∗
ρA⇐⇐ Cylinder(f)∗

ρB⇒⇒ B∗

In our particular case, we have the (classical) equivalence

Z⊗ZG B∗

k′

�� f
--
Z⊗ZG F∗

g
mm

k

��

so that we can construct a strong equivalence

Z⊗ZG B∗
ρ′
⇐⇐ Cylinder(f)∗

ρ⇒⇒ Z⊗ZG F∗

Now we recall that the left chain complex Z⊗ZG B∗ is equal
to C∗(K(G, 1)). If we suppose that the initial resolution F∗
is of finite type (and small), then the right chain complex
Z⊗ZG F∗ ≡ E∗ is effective (and small too), so that we have
obtained the desired effective homology of K(G, 1). In sum-
mary, we have an algorithm with the following input and
output.

Algorithm 1. Input: a group G and a free resolution F∗
of finite type with contracting homotopy.
Output: the effective homology of K(G, 1), that is, a (strong
chain) equivalence C∗(K(G, 1))⇐⇐⇒⇒E∗ where E∗ is an ef-
fective chain complex.

The effective homology of K(G, 1) makes it possible to de-
termine the homology groups of G, and, what is more inter-
esting, once we have K(G, 1) with its effective homology we
could apply different constructors and obtain the effective
homology of the results. For instance, if G is Abelian, one
can apply the classifying space constructor and obtain the
effective homology of W(K(G, 1)) = K(G, 2), which could
be useful in order to compute the homology of a 2-type, as
we will see later.

Algorithm 1 has been implemented in Common Lisp and
enhances the Kenzo system. The first step was to create a
new class GROUP with a slot resolution. This resolution is
used to compute the effective homology of the simplicial set
K(G, 1), as illustrated in the following example.

We consider the cyclic group of order 5. We construct it
with our Lisp function CyclicGroup and store it in the vari-
able C5. In this case, at the same time the group is built, a
(small) resolution of it (with a contracting homotopy) is au-
tomatically stored in a slot of C5 called resolution. It is a
reduction from the ZG-chain complex K2 to the trivial chain
complex K5 ≡ Z. This resolution allows us to compute the
homology groups of G = C5:

> (setf C5 (CyclicGroup 5))
[K1 Abelian-Group]
> (setf F (resolution C5))
[K10 Reduction K2 => K5]
> (orgn (k 2))
(zg-chain complex for [K1 Abelian-Group])
> (orgn (k 5))
(z-chcm)
> (homology C5 3)
Homology in dimension 3 :
Component Z/5Z
---done---

Let us emphasize that in this particular case the homology
of the group C5 could also be determined using the Bar res-
olution B∗ = Bar∗(C5), which in this case produces an effec-
tive chain complex Z⊗ZG B∗ ≡ E∗. However, the size of this
space is much bigger than the resolution used, and therefore
computations could only be done for low dimensions.

This resolution (with contracting homotopy) will be also
used in the computation of the effective homology of K(G, 1).
With the following instruction we construct this space; since
C5 is Abelian, we obtain a simplicial Abelian group.

> (setf KG1 (K-G-1 C5))
[K17 Abelian-Simplicial-Group]

The effective homology of a space is obtained with the func-
tion efhm. In our case we observe that the right chain
complex K11 is produced from K2 by applying the func-
tor Z ⊗ZG −, while the top big chain complex is obtained
making use of the cylinder construction, as explained in the
previous lines.

> (efhm KG1)
[K54 Homotopy-Equivalence K17 <= K44 => K11]
> (orgn (k 11))
(tensor-with-integers [K2 zg-chain complex for [K1 Abelian-Group]])
> (orgn (k 44))
(cylinder [K37 Morphism (degree 0): K17 -> K11])

The small (effective) resolution associated with the group
G = C5 is the one explained at the end of Section 2.1. It
could be exported from HAP (see the following sections)
or, in this particular case, it could be directly implemented
in Kenzo. For more complicated groups it is not so easy
to deduce and implement such a resolution; instead of pro-
gramming it directly in Kenzo, we will try the first method:
to obtain it from the system HAP.



4. EXPORTING RESOLUTIONS FROM HAP
As explained in Section 2.3, the GAP package HAP allows
one to obtain resolutions of many different groups, making
it possible to compute their homology. Our goal consists
in using these resolutions in Kenzo: we want to use HAP
to produce resolutions of some groups and import them into
Kenzo to construct the effective homology of spaces K(G, 1),
which will be later involved in new constructions.

In order to export resolutions from HAP, we use Open-
Math [2], an XML standard for representing mathemati-
cal objects. There exist OpenMath translators from sev-
eral Computer Algebra systems, and in particular GAP in-
cludes a package [15] which produces OpenMath code from
some GAP elements (lists, groups...). We have extended
this package in order to represent resolutions. A resolution
in OpenMath will be given by 5 elements: group, highest
degree, list of ranks of each ZG-module, boundary map and
contracting homotopy.

First of all, for the group we use the representation al-
ready defined in the OpenMath package. For instance, the
permutation group generated by the elements (3, 2, 1) and
(1, 3, 5, 4, 2) will be given by:

<OMA>
<OMS cd="group1" name="Group"/>
<OMA>

<OMS cd="permut1" name="Permutation"/>
<OMI> 3</OMI>
<OMI> 2</OMI>
<OMI> 1</OMI>

</OMA>
<OMA>

<OMS cd="permut1" name="Permutation"/>
<OMI> 1</OMI>
<OMI> 3</OMI>
<OMI> 5</OMI>
<OMI> 4</OMI>
<OMI> 2</OMI>

</OMA>
</OMA>

The highest degree of the resolution is simply an integer
number, therefore will be denoted inside <OMI> and </OMI>.

<OMI> 5</OMI>

The next element of the resolution is the list of ranks of
each ZG-module, that is, a list of integers, one for each de-
gree from 0 to the highest one. For the permutation group
already constructed, we obtain the following list:

<OMA>
<OMS cd="list1" name="list"/>
<OMI> 1</OMI>
<OMI> 3</OMI>
<OMI> 6</OMI>
<OMI> 10</OMI>
<OMI> 15</OMI>
<OMI> 20</OMI>

</OMA>

The description of the ZG-boundary and the contracting
homotopy is not so easy. These two maps are represented as

Figure 1: Communication between Kenzo and HAP

lists containing the images of the generators of each module
Fi, which are ZG-combinations. For instance, in degree 1
F1 = (ZG)3 has three generators. For the first one, its
boundary is the combination 1 ∗ (g2, z1)− 1 ∗ (g1, z1) where
gi is the i-element of the group G and zi is the i-generator
of F0 = ZG. It is represented in OpenMath as:

<OMA>
<OMS cd="resolutions" name="zgcombination"/>
<OMA>

<OMS cd="resolutions" name="zgterm"/>
<OMI> 1</OMI>
<OMA>

<OMS cd="resolutions" name="zggnrt"/>
<OMI> 2</OMI>
<OMI> 1</OMI>

</OMA>
</OMA>
<OMA>

<OMS cd="resolutions" name="zgterm"/>
<OMI> -1</OMI>
<OMA>

<OMS cd="resolutions" name="zggnrt"/>
<OMI> 1</OMI>
<OMI> 1</OMI>

</OMA>
</OMA>

</OMA>

Similar ZG-combinations are obtained for the generators 2
and 3 of F1 = (ZG)3, and the same process is applied for
each degree. Some examples of OpenMath representations
of resolutions written by our methods can be found in [10].
In the same site one can read the Content Dictionary for-
malizing all the OpenMath tags involved in our description.

The communication between HAP and Kenzo is done as
follows: given a group G, the system HAP produces a ZG-
resolution (including the homotopy operator). The reso-
lution can be automatically translated to OpenMath code
thanks to a new function (parser) we have added to the
OpenMath package [15] for GAP, and this code is written in
a text file. Then Kenzo imports the file (and translates the
OpenMath code into Kenzo elements thanks to the corre-
sponding parser) so that one can use the resolution directly
without the need of constructing it. Once the resolution is
defined in Kenzo, we can use it to determine the effective
homology of K(G, 1) as explained in Section 3. Figure 1
gives a general idea of the whole process. Some examples of
application are presented in the next section.



5. APPLICATIONS AND EXAMPLES
5.1 Homology of cyclic groups
Let G = Cm be the cyclic group of order m. As seen before,
it is not difficult to construct a resolution F∗ of G. This
allows one to compute some homology groups of every cyclic
group Cm. For instance, for m = 7:

> (setf C7 (cyclicgroup 7))
[K55 Abelian-Group]
> (resolution C7)
[K62 Reduction K56 => K5]
> (homology C7 5)
Homology in dimension 5 :
Component Z/7Z
---done---

The same resolution can also be imported from HAP. To
this aim, we make HAP write the OpenMath code to a file
“resolutionC7.txt” (see [10]) and then import it into Kenzo
with the instruction OmparseNextObject.

> (setf rsltnC7 (OmparseNextObject
(filetostring "resolutionC7.txt")))

[K75 Reduction K69 => K5]
> (orgn rsltnC7)
(resolution of [K55 Abelian-Group] obtained from hap)

If we assign it to the slot resolution of C7, then this reso-
lution will be used to compute the homology of the group.
As expected, we obtain the same result.

> (setf (slot-value C7 ’resolution) rsltnC7)
[K75 Reduction K69 => K5]
> (homology C7 5)
Homology in dimension 5 :
Component Z/7Z
---done---

These examples are very simple, but the case presented in
Section 4 is already more interesting: to construct small
resolutions for permutation groups is challenging, and we
need the expert knowledge implemented in HAP to import
it into Kenzo. But even the simpler case of cyclic groups
can give interesting applications when combining HAP with
all the power of Kenzo, as we will show in the two following
subsections.

5.2 Computations with K(G,n)’s
The first real application of our results is that we have al-
lowed Kenzo to compute the effective homology of the spaces
K(G, n) for every Abelian group G and all n ≥ 1, provided
that HAP knows how to compute a resolution of G. In par-
ticular, it is the case for the cyclic groups Cm of order m.

Given n = 1, our Algorithm 1 provides us the effective ho-
mology of K(G, 1). We have already seen an example of
computation in Section 3. Let us consider now G = C7.

> (setf KC71 (K-G-1 C7))
[K82 Abelian-Simplicial-Group]
> (efhm KC71)
[K119 Homotopy-Equivalence K82 <= K109 => K76]

Since G = C7 is Abelian, K(G, 1) is a simplicial Abelian
group, and we can apply the classifying space constructor
W which gives us W(K(G, 1)) = K(G, 2), which is also a
simplicial Abelian group with effective homology.

> (setf KC72 (classifying-space KC71))
[K120 Abelian-Simplicial-Group]
> (efhm KC72)
[K259 Homotopy-Equivalence K120 <= K249 => K245]
> (homology KC72 3 6)
Homology in dimension 3 :
---done---
Homology in dimension 4 :
Component Z/7Z
---done---
Homology in dimension 5 :
---done---

Iterating the process, K(G, n) = W(K(G, n− 1)) has effec-
tive homology for every n ∈ N. Our new Kenzo function
K-Cm-n allows us to construct K(Cm, n); we observe that
the slot efhm is directly constructed.

> (setf KC42 (K-Cm-n 4 2))
[K555 Abelian-Simplicial-Group]
> (efhm KC42)
[K729 Homotopy-Equivalence K555 <= K719 => K715]
> (homology KC42 4)
Homology in dimension 4 :
Component Z/8Z
---done---

This same technique allows one to compute the effective ho-
mology of spaces K(G, n), where G is a finitely generated
Abelian group. In this case, the homology of K(G, n) is
one of the main ingredients to compute homotopy groups of
spaces (see [13] and [14] for details).

5.3 An example of homology of a 2-type
Let us consider now G = C3 the cyclic group of order 3.
Let A = Z/3Z be the Abelian group of three elements with
trivial G-action (the groups G and A are in fact isomorphic;
different notations are used to distinguish multiplicative and
additive operations). Then the third cohomology group of
G with coefficients in A is

H3(G, A) = Z/3Z.

The elements of this cohomology group correspond to 2-types
[7] with π1 = G and π2 = A. One such 2-type X correspond-
ing to a non-trivial cohomology class [f ] in H3(G, A) can be
seen as a twisted Cartesian product (simplicial version of
a fibration, see [9]) X = K(A, 2) ×f K(G, 1). It can be
constructed by Kenzo in the following way:

> (setf K-C3-1 (K-Cm-n 3 1))
[K261 Abelian-Simplicial-Group]
> (setf chml-clss (chml-clss K-C3-1 3))
[K308 Cohomology-Class on K288 of degree 3]
> (setf tau (zp-whitehead 3 K-C3-1 chml-clss))
[K323 Fibration K261 -> K309]
> (setf x (fibration-total tau))
[K329 Kan-Simplicial-Set]

As explained in the previous example, K(A, 2) and K(G, 1)
are objects with effective homology. From the two equiva-
lences C∗(K(A, 2))⇐⇐⇒⇒E∗ and C∗(K(G, 1))⇐⇐⇒⇒E′

∗, Kenzo



knows how to construct the effective homology of the twisted
Cartesian product X = K(A, 2)×f K(G, 1), which makes it
possible to determine its homology groups:

> (efhm x)
[K541 Homotopy-Equivalence K329 <= K531 => K527]
> (homology x 5)
Homology in dimension 5 :
Component Z/3Z
---done---

In the same way, the homology groups of X = K(A, 2) ×f

K(G, 1) can be determined for all groups A and G with given
(small) resolutions and cohomology class [f ] in H3(G, A). If
the group G acts non-trivially on A, we obtain a different
2-type X ′ = K(A, 2) ×′

f K(G, 1). In this case, to compute
the effective homology of X ′ it would be necessary to in-
clude in Kenzo the construction of induced fibration (or in-
duced twisted Cartesian product, in our simplicial setting);
it should not be difficult as a further work.

6. CONCLUSIONS AND FURTHER WORK
In this paper we have reported on a successful attempt at
connecting two computer algebra systems: GAP and Kenzo.
The first is devoted to Group Theory (with its package HAP
focusing on homology of groups), and the second is devoted
to Algebraic Topology. An OpenMath link allows us to make
them work together. Concretely, some resolutions are ex-
ported from HAP to Kenzo, allowing our programs to com-
pute the effective homology of Eilenberg-MacLane spaces.
Then, these spaces are used as ingredients in other Alge-
braic Topology constructions (namely, classifying spaces and
fibrations), in order to get homology groups of 2-types which
are an important concept in homotopy theory [7].

Obviously, one could re-program in Kenzo the algorithms al-
ready implemented in HAP, since Kenzo is a Common Lisp
program which can be easily extended (things would be more
difficult the other way around: the effective homology algo-
rithms require higher order functional programming, and it
seems that the GAP programming language [1] is not spe-
cially designed for this kind of task). But it is more efficient,
from the engineering point of view, to apply a separation of
concerns principle: each system must be devoted to its own
domain of expertise, and then systems should interoperate
to get new and challenging results. Fortunately, technique
is mature enough at this moment to undertake such a work.
Our OpenMath link between HAP and Kenzo can be under-
stood as a demonstration of this claim.

With respect to future research, two big lines are open. In
the first one, Computational Group Theory could be applied
to Algebraic Topology. This has been briefly evoked at the
end of the previous section: a group can act non-trivially
on a space, producing new interesting spaces (2-types in our
example) where the Kenzo computation of homology groups
could increase our knowledge of them.

As a second research line, more information on homology of
groups could be extracted from the collaboration between
the algebraic techniques in HAP and the topological ones in
Kenzo. For instance, to investigate the homology of central
extensions a topological approach was provided in [12]; since

these kind of extensions have been also dealt with in HAP, to
compare experimentally both approaches could give a more
complete view of it. To this aim it could be instrumental
our program to explore spectral sequences of fibrations, ex-
plained in [11].
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