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1 Introduction

Let X be a connected CW-space whose homotopy groups m; X are trivial in dimensions
i > n+ 1. Such a space is termed a homotopy (n + 1)-type. In the case n = 0, classical
homological algebra provides a purely algebraic description of the integral homology H,(X)
in terms of derived functors. For n = 1 it has recently been shown [8] (cf. [2]) that the
homology can be realised as the nonabelian left derived functors of a certain abelianisation
functor A: (crossed modules) — (abelian groups). Crossed modules are convenient algebraic
models of homotopy 2-types. More generally, homotopy (n + 1)-types are modelled by cat”-
groups [9] or equivalently by crossed n-cubes [6]. Our aim in this paper is to explain how
the methods of [8] extend to arbitrary n > 0 and lead to a natural isomorphism

Hypin(X) = LYG), i 21 (1)

where L(—) is the i-th nonabelian left derived functor of a certain abelianisation functor
A: (crossed n-cubes) — (abelian groups) and G is a suitable crossed n-cube. We also explain
how the relationship between H,;(X) and Lg'(G) can be expressed as an algebraic formula
for the homology of X analogous to the Hopf type formula for the higher homology of a
group obtained in [1].

The paper handles only the cases n = 1, 2 in full detail. The routine modifications needed
for n > 3 are largely left to the reader. In Section 2 we recall some terminology and results of
D. Quillen [12] [14] on homology in algebraic categories. In Section 3 we derive the following
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lemma from general results on simplicial objects: if G is a projective n-fold simplicial group
then my(G) is a free group and m;(G) = 0 for ¢ > 1. Isomorphism (1) is proved in Section 4,
together with various Hopf-type formulae for H,(X).

We adopt the following notation. The category of sets is denoted by &. The category of
groups is denoted by G. The category of simplicial objects of a category C is denoted by SC.
Accordingly, SS denotes the category of simplicial sets, SG the category of simplicial groups.
The category of n-fold simplicial groups is denoted by §”G. We always identify an object X
of C with the constant simplicial object of SC whose simplicial operators are all equal to the
identity morphism of X. The free group on a set X is denoted by < X >,.. The standard
n-simplex is denoted by A™ and characterised by the property Homgs(A™, X) = X, for all
simplicial sets X. The integral homology of a simplicial set or CW-space X is denoted by
H,.(X). For a simplicial group G, we let M,(G) be the Moore complex of G, which is the
nonabelian chain complex defined by

M,(G)= [ Kera},

0<i<n

with d : M,(G) — M,,—1(G) induced by 0.

2  Quillen homology

In this section we recall some ideas and results of Quillen (see [12] and [14]).
Let C be a category with finite limits. We let X xy X denote the pull-back

Xxy X2 o x

b

X Y

of a morphism f: X — Y in C. The morphism f: X — VY is said to be an effective epimor-
phism if, for any object T, the diagram of sets

P

Home (¥, T) £ Home (X, T) -, Home (X xy X, T)
_)

is exact. This means that f* is an injective map and, if g: X — T is a morphism such that
gp1 = gpa, then there exists a (necessarily unique) morphism h:Y — T such that g = hf.
An object P of C is projective if for any diagram

lg
b

XT>Y

with f an effective epimorphism there exists a morphism h: P — X such that g = fh. We
say that C has sufficiently many projective objects if for any object X there is a projective
object P and an effective epimorphism P — X.

Let us assume additionally that C possesses colimits. An object X is called small if
Hom¢ (X, —) commutes with filtered colimits.



A class U of objects of C is said to generate C if for every object X there is an effective
epimorphism ) — X where () is a coproduct of copies of members of U.

The category C is said to be an algebraic category if it possesses finite limits and arbitrary
colimits and has a set of small projective generators. We leave the proof of the following
easy fact to the reader.

Lemma 1 Let C be an algebraic category and B C C be a full subcategory. Suppose that
B C C has a left adjoint L:C — B and that the following condition holds: a morphism
f: X =Y in B is an effective epimorphism in C if and only if it is an effective eptmorphism
in B. Then LP 1is a projective object in B for each projective object P in C. Thus B is an
algebraic category.

The following fundamental result is due to Quillen (see Theorem 4 in [12], Chapter II,
page 4.).

Theorem 2 Let C be an algebraic category. Then there exists a unique closed simplicial
model category structure on the category SC of simplicial objects over C such that a morphism
f in 8C is a fibration (resp. weak equivalence) if and only if Homge (P, f) is a fibration (resp.
weak equivalence) of simplicial sets for each projective object P of C. Moreover, if X is a
cofibrant object in SC then X,, is a projective object in C for all n > 0.

A simplicial resolution of an object X of C can be defined as a fibration ) — X in SC
which is also a weak equivalence. If additionally @) is a cofibrant object in SC then  — X
is called a simplicial cofibrant resolution. It is a formal consequence of Theorem 1 that
simplicial cofibrant resolutions exist and are unique up to homotopy equivalence, and up to
homotopy depend functorially on X.

Let C4 denote the category of abelian group objects in the algebraic category C. It can
be shown that C,, is an abelian category and that moreover the abelianisation functor

(_)a,b: C — Cab; X — Xab

left adjoint to the forgetful functor C,, C C, exists. Following [14] one defines the Quillen
homology of an object X in C as the homology of the chain complex associated to the

simplicial object Qg obtained by applying (—), dimensionwise to a simplicial cofibrant
resolution @ of X. We let D,(X) denote the Quillen homology of X.

3 Projective objects in n-fold simplicial groups

The material in this section is well-known. Our goal is the following result: a projective
object in "G has no homotopy in dimensions > 1.

Let Z be a small category and let GZ denote the category of functors Z — G from Z to
the category of groups.

Lemma 3 A morphism f: X — Y in GF is an effective epimorphism if and only if f(i) is
surjective for all objects 1 € I.

Proof. Assume f(7) is surjective for all objects i € Z. Then Hom(Y,T) — Hom(X,T) is
injective and, for any functor 7:Z — G and any natural transformation

g X —T



such that the diagram
X xy X"—X
lm lg
X—>—T

commutes, there exists a unique transformation

hY =T

such that ¢ = hf. The transformation A is given by

h(i)(y) = g(@)(f() ' (y)), y € Y (1)

The condition on g implies that A is well-defined. Conversely, assume f is an effective
epimorphism. Set Y’(i) = Im(f)(i) C Y (i). Then each X (i) — Y’(i) is surjective and
hence X — Y is an effective epimorphism. Therefore Hom(Y, Z) and Hom(Y’, Z) are both
equalisers of the same diagram and hence coincide. It follows that Y' =Y. O

Lemma 4 For each object 1 € T let

be the functor given by
j =< Homg(i,j) >¢r .

Then the collection (h;)ier is a set of small projective generators in the category G*.
Proof. The Yoneda lemma implies that

Homgz (h;, T) = T'(7)
for i € Z,T € G* and the result follows. O
Corollary 5 The category G* is an algebraic category.

In fact, one can prove that C* is an algebraic category for any algebraic category C. As a
consequence of Corollary 5 we see that the category of (n-fold) simplicial groups is algebraic.
We need to identify the homotopy type of projective objects in S"G.

Let A be the category of finite ordinals. We will assume that the objects are the sets

[n] ={0,1,---,n}, n>0

and morphisms are nondecreasing maps. Then GA” is the category of simplicial groups.
Since
A" = Hoonp([n], _)

is the standard n-simplex, Lemma 4 shows that any projective object in the category of
simplicial groups is a retract of a simplicial group of the form

< | (Sn x A™) >,

n>0

where (S),)n>0 is a sequence of sets.



It is well-known that the standard n-simplex is simplicially contractible (see for example
p on page 151 of [7]) and therefore the projection of Li,,>¢S, X A" to the constant simplicial
set Ll,>05, is a simplicial homotopy equivalence. Since any degreewise extension of a functor
S — G preserves the homotopy relation, we see that the simplicial group < Li,>¢S, X A™ >,
is homotopy equivalent to the constant simplicial group < U,>S, >4. As a consequence
we obtain the following.

Corollary 6 If P is a projective object in the category of simplicial groups, then P is degree-
wise free. Moreover moP s a free group and P is homotopy equivalent to a constant simplicial
group, hence m;P =0 fori¢ > 1.

We now consider bisimplicial groups. Given a bisimplicial group G we let G® and G,
denote the n-th vertical and m-th horizontal parts; both are simplicial groups. We let
7m?G and 7!G denote the simplicial groups obtained by taking the i-th homotopy group of
GY and G!. We let m;G denote the i-th homotopy group of the diagonal simplicial group
(Gnpn)n>o- For simplicial sets X and Y we let X®Y denote the bisimplicial set whose (m, n)-
th component is X,, X Y,,.

By Corollary 5 the category of bisimplicial groups is an algebraic category and any
projective object is a retract of a bisimplicial group of the form

< || Snm X (A"RA™) >,

n,m

where (Spm)nm>o0 is a family of sets. Thus each vertical or horizontal part is a projective
object in the category of simplicial groups. Moreover, if P is a projective object in the
category of bisimplicial groups, then

P =0=a'P, n>1
and both 7Y P and 7 P are projective objects in the category of simplicial groups. Thus
7T£L7T;-}P =0
as soon as ¢ > 0 or j > 0. So the spectral sequence [13]
Eiq = 7T;,)7T,}JLP = TprgP

implies that m; P = 0 for 7+ > 1. Since myP = 7rg7r(’}P we see that moP is a free group.
The situation for multisimplicial groups is analogous. We leave as an exercise to the
reader the modifications required to obtain the following result.

Lemma 7 Let G be a projective object in the category S™G of n-fold simplicial groups. In
each direction G is homotopy equivalent to a constant simplicial object in the category S"~'G
of (n — 1)-fold simplicial groups, which is also a projective in S"~'G. In particular, m;G = 0
fori > 1, and myP is a free group, where m;G denotes the i-th homotopy group of the diagonal
of G.



4 Homology of cat™-groups and crossed n-cubes

Recall [9] that a cat"-group consists of a group G together with 2n endomorphisms s;, t;: G —
G satisfying

8iSi = Siy Sit; = Ui, Uity = 1y, tis; = i,

Sitj = thi (’L 7é ]),

[Ker(s;), Ker(t;)] =0,
for 1 < i < n. A morphism of cat"-groups (G, s;,t;) — (G', s, 1) is a group homomorphism
G — G' that preserves the s; and ¢;. We let CG denote the category of cat!-groups, and C"G
the category of cat™-groups. Note that a cat’-group is just a group.

A cat'-group (G, s, t) is equivalent to a category object in G. The arrows are the elements
of G, the identity arrows are the elements of N = Im(s) = Im(¢), the source and target maps
are s and ¢, and composition of arrows g, h € G is given by goh = g(sg) 'h. Thus the nerve
of a category provides a functor N:CG — SG.

Lemma 8 i) N is a full and faithful;

ii) NV possesses a left adjoint T:S8G — CG and the functor N o T : G — 8G preserves the
homotopy relation. Moreover for any simplicial group G one has

TN oT(GR)) =m(G) if i=0,1

and

(N o T(G)) =0 if i > 1.

iii) a morphism f in CG is an effective epimorphism if and only if N'f is an effective epi-
morphism in 8G;

iv) CG is an algebraic category. Moreover if (G, s,t) is a projective object in the category CG
of cat'-groups, then m;(N(GQ)) =0 for i > 0 and mo(N(G)) is free group.

Proof. i) is obvious. The statement ii) is well-known and it follows for example from
Proposition 3 of [11]. By loc. cit. the cat’-group 7G has underlying group G;/02(Ms(G));
the maps s and ¢ are induced by dj and dj. One easily checks that for any simplicial group
G the Moore complex of A o T(G) is isomorphic to

o= 0= Mi(Q) /R (My(G)) — My(G)

and therefore m(N o T(G)) = m(GQ) if i = 0,1 and (N o T(G)) = 0 if ¢ > 1. In order
to verify iii), note that the argument given in the proof of Lemma 3 shows that f is an
effective epimorphism if and only if f is surjective (as a homomorphism of groups). But f
is surjective if and only if N f is degreewise surjective which, by Lemma 3, is equivalent to
N f being an effective epimorphism. By iii) the assumptions of lemma 1 hold and therefore
CG is an algebraic category. The last statement of iv) follows easily from Lemma 6 and from
ii). O

A cat?-group G is equivalent to a category object in CG. It is thus equivalent to a group
endowed with two compatible category structures, a horizontal one and a vertical one. The
nerve NG of the vertical category structure is a category object in SG. By then taking the
nerve of the horizontal category structure, we obtain a full and faithful functor

N? = NPNP:C2G — S%¢



into bisimplicial groups. Moreover a morphism f is an effective epimorphism (i.e. surjective
as a group homomorphism) in C2§G if and only if N2f is an effective epimorphism (i.e. di-
mensionwise surjective) in S2G. The functor A2 admits a left adjoint

T2:.8°G — C*G

which is defined by first applying 7 dimensionwise to a bisimplicial group G' to obtain a
simplicial cat'-group 7G, and then applying 7 again to obtain a cat?-group 7°G.

By Corollary 5 and Lemma 1 the category C2G of cat?-groups is an algebraic category.
Moreover if (G, s1, S, 11, t2) is a projective object in the category C2G of cat®>-groups, then the
horizontal and vertical cat'-groups are projective in the category of cat'-groups. Moreover
m;(N?(G)) = 0 for i > 0 and 75(N?(Q)) is free group. These facts follows easily from Lemma
7 because T respects the homotopy relations.

The situation for cat™-groups is similar. We leave as an exercise for the reader the routine
modifications needed to establish the following.

Lemma 9 The category C"G of cat™-groups is an algebraic category. Moreover if (G, s;,t;),
1=1,---,n is a projective object in the category C"G, then each ‘face’ of G is a projective
object in the category C"'G. Furthermore m;(N™(G)) = 0 for i > 0 and mo(N™(G)) is a free
group.

An abelian group object in C"G is just a cat™-group whose underlying group is abelian.
The abelianisation functor
(=)ab:C"G — (C"G)ap

sends a cat"-group G = (G, s;,t;) to the cat"-group with underlying group G, = G/[G, G]
and induced homomorphisms s;,%;: Ggy — Ggap- The Quillen homology of a cat™-group G
is obtained from a cofibrant simplicial resolution () — G by abelianising the simplicial
cat™-group () dimensionwise and taking the homology of the associated chain complex or
associated Moore complex:

Di(G) = Wi(Qab) .

Note that D;(G) is an abelian cat"-group for each 7 > 0. Below we define the group
H;(G)Quinen as a subgroup of the underlying group of D;_;(G).

There is an alternative way to define the homology of a cat™-group G, based on the
composite functor

B:c"g M sng A grrig dewal g

from cat™-groups to simplicial sets (n > 0). The functor N:S8"G — S"*'S is defined by
considering groups as categories and taking the nerve degreewise. The geometric realization
|BG| is by definition the classifying space of the cat™group G and induces an equivalence
between the (suitably defined) homotopy categories of cat™-groups and connected CW-spaces
X with mX = 0 for i > n+2 (see [9]). The integral homology of |BG]| is a natural homology
to associate to GG, and so we set

Hi(G)rop = Hi(|BG)), i > 0.

We refer the reader to [5] and [4] for more information on H;(G)rop in the case n = 1. Our
principal aim in this paper is a comparison of the algebraically defined homology D, (G) with
the topologically defined homology H.(G)rgp.



We remark that the classifying functor B behaves nicely with respect to the inclusion
functor C"G — SC"G and also with respect to the inclusion functors incl;: C"G — C" ™G
(1 < j < n+1) which insert identity morphisms s;,t;. By taking nerves and diagonals
appropriately one obtains a functor B: SC"G — 8§ from simplicial cat”-groups to simplicial
sets such that the triangle of functors

G inclusion Scng

I

commutes. The triangle of functors

also commutes for each j.

To facilitate the comparison of H,.(G)rop and H,(G)quinen We recall from [6] some details
on the categorical equivalence between cat™-groups and crossed n-cubes. A crossed n-cube
consists of a collection of groups M, indexed by the 2" subsets o C {1,---,n}, together with
homomorphisms A;: My, — Mg\ for @ € a and commutator type functions h: M, x Mg —
Moyup. For present purposes it is unnecessary to recall precise details of the commutator
functions or the axioms satisfied by the structure. A crossed 1-cube

Mgy 25 M

is just a crossed module, the action being given by My x My — My, (x,y) = h(z,y)y. A
crossed 2-cube
My = My

Lk

Mpy 2= My

coincides with the notion of a crossed square introduced by Loday [9]. A morphism (M,) —
(M) of crossed n-cubes is a family of structure preserving group homomorphisms M, — M.
We let XG denote the category of crossed modules, and X"G the category of crossed n-cubes.

It has long been known that a crossed module is equivalent to a category object in
G, that is, to a cat'-group (see [3]). Loday [9] proved that crossed squares are equivalent
to cat?-groups, and this equivalence was extended [6] to one between crossed n-cubes and
cat™-groups. The functorial equivalence

E:C"G — X"G
sends a cat"-group G = (G, s;, ;) to the crossed n-cube £G with

EG, = [ Ker(s;) N [ Im(s;)

i€a jEa



where @ denotes the complement of « in {1,---,n}. The morphisms \;: EG, — EGq\ (i are
the restriction of ¢;, and the functions A are all given by commutation in the group G. It is
convenient to let oG denote the group

oG = gG{ly...,n} - ﬂlSiSnKer (Sz)
The inverse equivalence £~': X"G — C"G is described in [6]. For a crossed n-cube M we set
BM = B(EIM).

The equivalence £:CG — XG induces an equivalence £:S8CG — SXG such that the
diagram
oG —inclusion _ g
£ £
G —inclusion _ 60
commutes.

We need the following easily verified description of the crossed n-cube £(G,) associated
to the abelianisation of a cat™-group G.

Lemma 10 Let G be a cat"-group with associated crossed n-cube EG = (M,). Then the
crossed n-cube associated to Ggp, has the form E(Ga) = (M,) where

Ma = Ma/ H [Mﬂ’M’Y]a

BUr=a,BNy=0

commutator subgroups being defined via commutation in the underlying group of G.

The comparison of H,(G)r,p with D,(G) is facilitated by setting
H;(G)quien = 0D;_1(G), i>1

HO(G)Quillen =7Z.

We also denote by H;(G)quinen the corresponding reduced groups. Thus Hy(G)quiten =
0 and ﬁi(G)Qui]]en = Hi(G)Quillen for ¢+ > 0. Then both H*(G)Top and H*(G)Qui]]en are
functors C"G — Ab to the category of abelian groups. When n = 0 we have functors
H.(—)Tops Hi(—)Quilen: ¢ — Ab and it is well-known that

H,(G)rop = H.(G)Quillen
in this case. We denote both of these homology functors by H,(G).

Let us now consider n = 1. A cat!-group G is equivalent to a crossed module \;: & Gpy —
EGy which for simplicity we denote by \: M — P. To the group P we can associate the
crossed module 0 — P. The inclusion morphism of crossed modules (0 — P) — (M 2 P)
induces a map of simplicial sets

0 M
fe:B| L | =B 1
P P

We denote by Cof(G) the homotopy cofibre of fi. The following theorem, modulo some no-
tation, was proved in [8]. (A more general version of the result for homology and cohomology
with arbitrary coefficient module is contained in [10].)



Theorem 11 For any cat'-group G there is an isomorphism
H;i(G)quiten = Hiy1(|Cof(G))), (i > 0)
and consequently an exact sequence
o= Hi 1 (P) = Hig1(G)op = Hi(G)qQuitlen — Hi(P) — -+ (i >1).

We wish to explain how this result generalises to cat™-groups, n > 1. To pave the way we
recall the proof for the case n = 1.

Proof. Let ) — G be a cofibrant simplicial resolution of G, that is a fibration in S(CG)
which is also a weak equivalence and where () is cofibrant. Then B(Q) — BG is a weak
equivalence in 8S. Moreover, it is readily checked that B(EQy) — B(£Gy) is also a weak
equivalence. The map fg and cofibre Cof(QQ) are defined analogously to fi and Cof(G). The
homology exact sequences associated to the cofibrations fg, fo show that Cof(Q)) — Cof(G)
induces an isomorphism in homology. Since Cof(Q) and Cof(G) are both 1-connected it
follows that Cof(Q) — Cof(G) is a weak equivalence.

The simplicial set Cof(() is obtained as the diagonal of a bisimplicial set X with X, =
Cof(Qp), where @), is the p-th component of (). The homology spectral sequence for the
bisimplicial set X has the form

E;q = Hy(Cof(Qp)) = Hp4(Cof(G)) .

Now Cof(@),) is the cofibre of the map B(P,) — B(M, — P,) where M, — P, is the crossed
module equivalent to @,. Since @, is a projective cat'-group it follows that M, — P, is
a projective crossed module. It is readily seen that P, must be a free group. Part (iv) of
Lemma 8 implies that both classifying spaces here have free fundamental group and trivial
higher homotopy groups. So Cof(Q),) is simply connected and the homology exact sequence
of a cofibration implies that H;(Cof(Q,)) = 0 for i > 2 and

Hy(Cof(@Q,)) = Ker(By)as — (Po/My)ar).
Lemma 8 implies that P,/M, is free. Hence Hy(P,/M,) = 0 and
0— M, — P,— P,/M,—0
is a split short exact sequence. It follows that
Ker((Py)as = (Po/My)as) = My /[My, .

Thus
H2(COf(Qp)) = Mp/[Mpa Pp]-

Hence

E;q =0if ¢ #0 or 2, E';O =17, and E;Q = My/[Mp, B).

Thus E}, is a constant simplicial abelian group. Hence E}, = 0 for p > 0. Therefore the
spectral sequence degenerates and gives the isomorphism



Lemma 10 implies

and so
(M, /[M,, P.]) = H;11(G)Quilten-
O

Corollary 12 Let M — P denote the crossed module associated to the cat'-group G. If P
is a free group then there are natural isomorphisms

Hi 1(G)rop = Hi(G)Quinen (i > 2),

Hy(G)1op = Ker(M/[M, P] — P/[P, P)).

The description of Hy(G)top given in the corollary can be viewed as a generalization
of Hopf’s formula for the second integral homology of a group K. To see this, note that
if mG = K,mG = 0 in the corollary, then M is a normal subgroup of the free group P
with K = P/M, and Hy(G)1op = Ho(K,Z). We thus recover Hopf’s formula Hy(K,Z) =
M N [P, P]/[M, P].

Consider now n = 2. An arbitrary cat?-group G is equivalent to a crossed square £G
which, for simplicity, we denote by

L — N
! !
M — P

By applying the classifying functor B: X?G — SS to a diagram of crossed squares we obtain
the following diagram of simplicial sets:

0 — 0 P
Bl | 4 < B
0 —- P

1% 19&
0 — 0 2 L — N
B(i i) —CiB(i i)
M — P M — P

gg: cofibre(f5) — cofibre(f2)

from the homotopy cofibre of f to the homotopy cofibre of f&. We denote by Cof(G) the
cofibre of this map g¢.

There is a natural map

Lemma 13 Let G be a cat®-group equivalent to the crossed square

L — N
{ {
M — P.

If G is a projective object in the category C*G, then |Cof(GQ)| s homotopy equivalent to a

wedge of 3-spheres and
L

H;(|Cof(G)]) = [M, NJ[L, P



Proof. By Lemma 9 both N — P and M — P are projective objects in the category of
crossed modules and hence are injections. By Proposition 1 of [8] Cof(f}) is a wedge of

2-spheres and
N

[P, N]'
The map f2 yields the following epimorphism of free groups after applying the functor m

Hy(|Cof(fg)]) =

P/M — P/MN.

Since |Cof(f2)| is connected it follows that |[Cof(f2)| is 1-connected. On the other hand
both spaces B(M — P) and B(G) are homotopy equivalent to wedges of 1-spheres thanks
to Lemma 8 and Lemma 9. Thus it follows from the homology exact sequence that |Cof(f3)|
is homotopy equivalent to the wedge of 2-spheres and the sequence

0 — Hy(|Cof(f2)|) = (P/M)ap — (P/MN)g — 0

is exact. Since G is projective we have L = M N N because 72 (N (G)) = 0. Thus

N

Ho(ICof(f6)) = 5y

The map Cof(f}) — Cof(f2) yields the following epimorphism of groups by applying the

functor Hy:
N N

[P.N] PN M
Hence the homology exact sequence shows that |Cof(G)| is a wedge of 3-spheres and that
H;3(Cof(Q)) = L/[N,P]n M. Since P/N is a free group the Hopf formula for Hy(P/N)
implies that [V, P] = NN [P, P] and hence that H3(Cof(Q)) = L/LN[P, P]. The Hopf type
formula for the third integral homology of a group [1] states that

_ LN[P, P
H(PIMN) = G NI, P)

Since P/MN is a free group it follows that

L

H3(Cof(Q)) = ML N|L P

The following is the main result.
Theorem 14 For any cat’>-group G there is an isomorphism

H;(G)quinen = Hiya(|Cof(G)]), (i >0).

Proof. Let Q — G be a cofibrant simplicial resolution of G. The cofibre Cof(Q) is defined
analogously to Cof(G). It is readily checked that there are weak equivalences

B(Q) = B(G),
B(gQ{l} — EQ(Z)) — B(SG{l} — SG@),



B(gQ{Q} — SQQ)) — B(SG{Q} — SGQ)),
B(BQg) — B(Go)-
The homology exact sequences associated to the cofibrations

B(EGy — EGy) — B(G) — cofibre(fZ)

B(EQuy — £Qp) — B(Q) — coﬁbre(fé)

show that the map cofibre(f3) — cofibre(f&) is a homology equivalence and hence a weak
equivalence. Similarly the map cofibre(fg) — cofibre(f¢) is a weak equivalence. Hence there
is a weak equivalence

Cof (Q) = Cof(G)

The simplicial set Cof(() is obtained as the diagonal of a bisimplicial set X with X, =
Cof(Q,), where @, is a projective cat®group. The homology spectral sequence for the
bisimplicial set X has the form E}, = H,(Cof(Qp)) = Hpiq(Cof(G)).

Now @, is equivalent to a projective crossed square

L, — N,
\ 1
M, — P,
According to Lemma 13 we have
. L
E,,=0ifg#0o0r3, Eg,=1%, and E;?): i, ﬁ N
So E 0 = 0 for p > 0 and the spectral sequence yields the 1som0rph1sm
(Cof(G)) = ( Ly ) >0
z 0 , 1= U
i [Mp, Npl[Lyp, Byl

Lemma 10 implies

e (ea)

and so

LP
7 gHz G uillen -
() = o Gl
O

Corollary 15 In the crossed square associated to a cat’-group G suppose that the group P
is free and the crossed modules M — P, N — P are projective in XG. Then

Hio(G)rop = Hi(G)qQuitlen (1 > 2),

Hy(G)rop = Ker <[M, Nz P P, P]) '

Proof. The isomorphism follows from the homology exact sequences arising from the various
cofibration sequences involved in the construction of Cof(G). O

The description of H3(G)rop in the corollary can be viewed as a generalization of the
Hopf-type formula for the third integral homology of a group given in [1]. Interestingly, the
formula in [1] plays a key role in the proof of this generalisation.

We leave as an exercise for the reader the formulation and proof of Theorem 14 and
Corollary 15 for the case n > 3.
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