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ABSTRACT. The paper improves on an upper bound for the order of the Schur mul-
tiplier of a finite p-group given in [6]. The new bound is applied to the problem of
classifying p-groups according to the size of their Schur multipliers.

In a paper [6] dedicated to B.H. Neumann’s sixtieth birthday, the second author used results of [5]
to show that a d-generator group G of prime-power order p" has Schur multiplier M(G) of order
at most p{@~1(n=d)/2 1 this article we use results of the first author [3] to obtain a reduction of
this bound. The reduced bound is then applied to the problem of classifying p-groups according to
the orders of their Schur multipliers, at least in the case where the multipliers are large.

We begin by blending parts (i) and (ii) of Proposition 5 in [3] to produce the following propo-
sition.

Proposition 1. [3] Let G be a finite p-group with centre Z(G) and lower central series 1 =
Ye41G 47.G < -+- 4y G = G. Set G = G/Z(G) and consider the homomorphism
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Here T denotes the image in G of the element = € G, and [z,y], denotes the image in 72G/v3G of
the commutator [z,y] € G. Then
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Proposition 1 leads to the following numerical bound on the order of the Schur multiplier.

Theorem 2. Let G be a d-generator group of order p™. Suppose that the abelianisation G has
order p™ and exponent p°, and that the central quotient G/Z(G) is a §-generator group. Then

|M(G)| < pd(mfe)/Q + (6-1)(n—m) — max{0,6—2} (2)
Since e > m/d and d > 6, inequality (2) implies
IM(G)] < pld-DEn-m)/2, ‘)

Bound (3) is attained if G = Cpe X Cpe X -+ X Cpe.

Proof. Recall that M(G) is isomorphic to the exterior square G A G of abelian groups [2].
Suppose that Gt Cpr1 X Cpnz X =++ X Cpng where n; <mng < --- <ng=-eand ny+ng+---+ny
= m. Then M(G) has order p®, where



a = (d—l)n1+(d—2)n2+---+nd_1
= d(n1+n2-|-----|—nd_1)—(n1-|—2n2-|-----|—(d—1)nd_1)

= dim—e)—(n1+2na+---+(d—1)ng1)

< dm—e) -1 +2+---+(d—-1))

= d(m—e)/2.

Since the tensor product is distributive with respect to direct sums, we have
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Suppose next that 6 > 3. Since ¥2G /3G is non-trivial, we can choose a generating set

{Z1,%2, -+, %5} for G/Z(G) such that [zq,z2], is a non-trivial element of v,G//y3G and indeed

is not a pth power of any element there since pth powers lie in the Frattini subgroup. We shall
establish now the critical point of the proof, viz. that the § — 2 elements

U(T1 ®T2 QT3), U(T1 T2 @ T4), -, V(T1 QT2 ® Ty) (6)

constitute § — 2 linearly independent elements in the abelian group 72.G/v3G ® a*. Setting A :=
v2G/v3G temporarily, we see that

ARG = (A® <71 >) x -+ x (A® < Tg >),

and that ¥(Z; ® T2 ®T;) is the only one of the § — 2 elements listed in (6) above to have a non-trivial
projection in A® < T; >, so that these § — 2 elements are indeed linearly independent and we have

image(¥)| > p®~2. (7

Inequality (2) is obtained by substituting inequalities (4), (5) and (7) into (1). O

The methods in [3] show that the quantity |image(¥)| could be replaced by a (larger) prod-
uct |image(¥)||image(¥3)|- - - |[image(¥.)| in inequality (1), thus leading to an improvement in the
bounds of Theorem 2.

On substituting the inequalities d < m < n into (3) we obtain a well-known result of J.A. Green,
namely that |M(G)| < p™™ /2 for any group G of order p”. In other words, for any group G
of order p" there is an integer ¢ > 0 such that |M(G)| = p"(»D/2-t. Those finite p-groups with
t = 0,1 have been classified by Berkovich [1]. The classification has been extended to ¢t = 2 by
Zhou [7], and to t = 3 by the first author [4]. In light of this work we make the following formal
definition.

Definition. Let the corank of a finite p-group G be the integer ¢ = corank(G) for which |M(G)| =
p /2t with n = log, |G|.

The known classifications of finite p-groups by corank are summarised in the following table. All
groups G with corank(G) < 3 are listed. In the table C,: denotes the cyclic group of order p, D
denotes the dihedral group of order 8, () denotes the quaternion group of order 8, E; denotes the
extraspecial group of order p3 with odd exponent p, and E, denotes the extraspecial group of order
p® with odd exponent p?.



corank(G) p=2 p = odd prime

t=0 (C)F, k>1 (Cp)F, k>1

t=1 Cy Cp2, En

t=2 Cy xCy, D Cp x Cp2, B

t=3 Cs, Cy x Cy x Cy, Q, D x Cy Cp3, Cp X Cp X Cp2, Eo, By x Cp x Gy

In [4] it is shown how the information in this table can be derived from a bound on the Schur
multiplier due to Gaschiitz, Neubiiser and Yen [5]. Since inequality (2) is slightly sharper than
the bound of Gaschiitz et. al., it too has ramifications for the classification of p-groups by corank.
Some of these are listed in the following proposition. An interesting corollary to the proposition
is that, for any given prime p and integer ¢ > 1, there are only finitely many p-groups G with
corank(G) = t.

Proposition 3. Let G be a non-cyclic d-generator group of order p"™, with commutator subgroup
[G, G] of order p°, and Frattini subgroup [G,G]GP of order p®. Suppose that the abelianisation
G has exponent p®, and that the central quotient G/Z(G) is a d-generator group. Furthermore,
suppose that corank(G) =t where t > 1. Then :

(H0<c<t.
(ii)c<a<+V2t—c.

e
(iii) 2 < d < W whenever a # c .

(iv)2<d<t+2-— —“ whenever a = ¢ .

(v) & P20+ d+23c)c41-ad 2+ < § < d whenever c #0.

(vi)1 <e< 2= 2(d+1-d)e—d(a—c—1)—(a’ —a)~2max{0,0-2}

d
(VII) 1+\/1+4 <n< 2t+a(c+e)+26(iei)ac 12max{0(5 2}

Proof. Note that a >¢>0,d>d§ >0,e>m/d > 1 and d > 2. On substituting n = a + d,m =
a+ d — c into (2) we obtain

a?—a<2t—(d+1-68)c)+d(c+1—a—e)—2max{0,§ — 2}. (8)
We derive the inequality
a? —a <2(t—c)— (a—c)(d—1) — 2max{0,6 — 2} 9)

from (8) by substituting d > 6, e > m/d. Since a®?—a > 0, inequality (9) implies (i). Sinced—1 > 1,
inequality (9) implies a?> < 2t — ¢, from which we deduce (ii). We also deduce (iii) from (9). On
substituting a = ¢, e = 1, 6 > 2 into (8), we obtain

2
dt(d-8)(a—-1)<t+2-219

(10)

The inequality 6 > 2 corresponds to the fact [2] that no non-trivial cyclic group is itself a central
quotient. Inequality (10) implies (iv). Inequality (9) implies (v), the condition ¢ # 0 being used
to obtain § > 2. Inequality (8) implies (vi) and the right-hand inequality of (vii). The left-hand
inequality of (vii) follows immediately from the definition of corank. O



Corollary 4. (i) For each prime p and integer t > 0 there exists at least one p-group with corank
equal to t.

(ii) For each prime p and integer t > 1 there are only finitely many p-groups with corank equal to
t.

Proof. The formula for the Schur multiplier of a direct product [2], namely M (G x H) = M(G) &
M(H) & (G @ H*), can be used to show that the abelian group (C,)"~! x C)2 has corank equal
to t for each ¢ > 1. Any elementary abelian group has corank equal to 0. This proves part (i).

Suppose that G is a p-group with corank(G) = t > 1. Proposition 3 implies that the order of
G is bounded by a number, say f(t), that depends only on ¢. There are only finitely many groups
of order at most f(¢). This proves part (ii). O

The following modification to the definition of corank provides a single numerical parameter
for measuring how far a p-group ‘deviates’ from being elementary abelian.

Definition The relative corank of a finite p-group G is the number

corank(Q)
rcrank(G) = ———=
log,, |G|

Thus the relative corank is a rational number lying in the range

log, |G| — 1

0 < rcrank(G) < 5

Proposition 3(ii) shows that groups with a small relative corank also have a relatively small
Frattini subgroup. But relative corank captures more than the size of the Frattini subgroup. For
example, the dihedral and quaternion groups of order eight have rcrank(D) = 2/3 and rcrank(Q) =
1. For certain families of groups it is fairly straightforward to compute the relative corank. For
instance, letting ES(p, k) denote an arbitrary extraspecial p-group of order p?**1, we have:

rcrank((Cp, )") =0,

rerank(Cpn) = 271,

crms((Cy"?  Cp) = 221,

rcrank((Cpz )2 =1,

rcrank(ES(p,k)) =1, for k > 2

rcrank(ES(p, k) x ES(p,k)) = 2+ g, for k> 2.

To obtain the last two calculations we have used the description of the Schur multipliers of ex-
traspecial p-groups given in [2], together with the following simple lemma whose proof is left to the
reader.

Lemma 5. Let G and H be groups of orders p™ and p™. Then

nm — log, |G® x H®
rcrank(G) + rcrank(H) + B | | .

rcra,nk(GxH):n+m . .
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