A BOUND ON THE SCHUR MULTIPLIER OF A PRIME-POWER GROUP

GRAHAM ELLIS and JAMES WIEGOLD

For Bernhard Neumann on his 90th birthday.

ABSTRACT. The paper improves on an upper bound for the order of the Schur multiplier of a finite p-group given in [6]. The new bound is applied to the problem of classifying p-groups according to the size of their Schur multipliers.

In a paper [6] dedicated to B.H. Neumann's sixtieth birthday, the second author used results of [5] to show that a d-generator group G of prime-power order p^n has Schur multiplier M(G) of order at most $p^{(d-1)(2n-d)/2}$. In this article we use results of the first author [3] to obtain a reduction of this bound. The reduced bound is then applied to the problem of classifying p-groups according to the orders of their Schur multipliers, at least in the case where the multipliers are large.

We begin by blending parts (i) and (ii) of Proposition 5 in [3] to produce the following proposition.

Proposition 1. [3] Let G be a finite p-group with centre Z(G) and lower central series $1 = \gamma_{c+1}G \subseteq \gamma_cG \subseteq \cdots \subseteq \gamma_1G = G$. Set $\overline{G} = G/Z(G)$ and consider the homomorphism

$$\Psi \colon \overline{G}^{ab} \otimes \overline{G}^{ab} \otimes \overline{G}^{ab} \longrightarrow \frac{\gamma_2 G}{\gamma_3 G} \otimes \overline{G}^{ab}, \ \overline{x} \otimes \overline{y} \otimes \overline{z} \mapsto [x,y]_{\gamma} \otimes \overline{z} + [y,z]_{\gamma} \otimes \overline{x} + [z,x]_{\gamma} \otimes \overline{y}.$$

Here \overline{x} denotes the image in \overline{G} of the element $x \in G$, and $[x,y]_{\gamma}$ denotes the image in $\gamma_2 G/\gamma_3 G$ of the commutator $[x,y] \in G$. Then

$$|M(G)||\gamma_2 G||\operatorname{image}(\Psi)| \leq |M(G^{ab})||\frac{\gamma_2 G}{\gamma_3 G} \otimes \overline{G}^{ab}||\frac{\gamma_3 G}{\gamma_4 G} \otimes \overline{G}^{ab}| \cdots |\gamma_c G \otimes \overline{G}^{ab}|. \tag{1}$$

Proposition 1 leads to the following numerical bound on the order of the Schur multiplier.

Theorem 2. Let G be a d-generator group of order p^n . Suppose that the abelianisation G^{ab} has order p^m and exponent p^e , and that the central quotient G/Z(G) is a δ -generator group. Then

$$|M(G)| \le p^{d(m-e)/2 + (\delta-1)(n-m) - \max\{0, \delta-2\}}.$$
 (2)

Since $e \geq m/d$ and $d \geq \delta$, inequality (2) implies

$$|M(G)| \le p^{(d-1)(2n-m)/2}.$$
 (3)

Bound (3) is attained if $G = C_{p^e} \times C_{p^e} \times \cdots \times C_{p^e}$.

Proof. Recall that $M(G^{ab})$ is isomorphic to the exterior square $G^{ab} \wedge G^{ab}$ of abelian groups [2]. Suppose that $G^{\underline{ab}} \subset C_{p^{n_1}} \times C_{p^{n_2}} \times \cdots \times C_{p^{n_d}}$ where $n_1 \leq n_2 \leq \cdots \leq n_d = e$ and $n_1 + n_2 + \cdots + n_d = m$. Then M(G) has order p^a , where

$$a = (d-1)n_1 + (d-2)n_2 + \dots + n_{d-1}$$

$$= d(n_1 + n_2 + \dots + n_{d-1}) - (n_1 + 2n_2 + \dots + (d-1)n_{d-1})$$

$$= d(m-e) - (n_1 + 2n_2 + \dots + (d-1)n_{d-1})$$

$$\leq d(m-e) - \frac{m-e}{d-1}(1+2+\dots + (d-1))$$

$$= d(m-e)/2.$$
(4)

Since the tensor product is distributive with respect to direct sums, we have

$$\left|\frac{\gamma_2 G}{\gamma_3 G} \otimes \overline{G}^{ab}\right| \left|\frac{\gamma_3 G}{\gamma_4 G} \otimes \overline{G}^{ab}\right| \cdots \left|\gamma_c G \otimes \overline{G}^{ab}\right| = \left|\left(\frac{\gamma_2 G}{\gamma_3 G} \oplus \cdots \oplus \gamma_c G\right) \otimes \overline{G}^{ab}\right| \le p^{\delta(n-m)}. \tag{5}$$

Suppose next that $\delta \geq 3$. Since $\gamma_2 G/\gamma_3 G$ is non-trivial, we can choose a generating set $\{\overline{x}_1, \overline{x}_2, \dots, \overline{x}_{\delta}\}$ for G/Z(G) such that $[x_1, x_2]_{\gamma}$ is a non-trivial element of $\gamma_2 G/\gamma_3 G$ and indeed is not a pth power of any element there since pth powers lie in the Frattini subgroup. We shall establish now the critical point of the proof, viz. that the $\delta - 2$ elements

$$\Psi(\overline{x}_1 \otimes \overline{x}_2 \otimes \overline{x}_3), \Psi(\overline{x}_1 \otimes \overline{x}_2 \otimes \overline{x}_4), \cdots, \Psi(\overline{x}_1 \otimes \overline{x}_2 \otimes \overline{x}_\delta)$$
 (6)

constitute $\delta - 2$ linearly independent elements in the abelian group $\gamma_2 G/\gamma_3 G \otimes \overline{G}^{ab}$. Setting $A := \gamma_2 G/\gamma_3 G$ temporarily, we see that

$$A \otimes \overline{G}^{ab} \cong (A \otimes \langle \overline{x}_1 \rangle) \times \cdots \times (A \otimes \langle \overline{x}_{\delta} \rangle),$$

and that $\Psi(\overline{x}_1 \otimes \overline{x}_2 \otimes \overline{x}_i)$ is the only one of the $\delta - 2$ elements listed in (6) above to have a non-trivial projection in $A \otimes \langle \overline{x}_i \rangle$, so that these $\delta - 2$ elements are indeed linearly independent and we have

$$|\mathrm{image}(\Psi)| \ge p^{\delta - 2}.\tag{7}$$

Inequality (2) is obtained by substituting inequalities (4), (5) and (7) into (1). \Box

The methods in [3] show that the quantity $|\operatorname{image}(\Psi)|$ could be replaced by a (larger) product $|\operatorname{image}(\Psi)||\operatorname{image}(\Psi_3)|\cdots|\operatorname{image}(\Psi_c)|$ in inequality (1), thus leading to an improvement in the bounds of Theorem 2.

On substituting the inequalities $d \leq m \leq n$ into (3) we obtain a well-known result of J.A. Green, namely that $|M(G)| \leq p^{n(n-1)/2}$ for any group G of order p^n . In other words, for any group G of order p^n there is an integer $t \geq 0$ such that $|M(G)| = p^{n(n-1)/2-t}$. Those finite p-groups with t = 0, 1 have been classified by Berkovich [1]. The classification has been extended to t = 2 by Zhou [7], and to t = 3 by the first author [4]. In light of this work we make the following formal definition.

Definition. Let the *corank* of a finite *p*-group *G* be the integer $t = \operatorname{corank}(G)$ for which $|M(G)| = p^{n(n-1)/2-t}$ with $n = \log_p |G|$.

The known classifications of finite p-groups by corank are summarised in the following table. All groups G with $\operatorname{corank}(G) \leq 3$ are listed. In the table C_{p^i} denotes the cyclic group of order p^i , D denotes the dihedral group of order 8, Q denotes the quaternion group of order 8, E_1 denotes the extraspecial group of order p^3 with odd exponent p, and E_2 denotes the extraspecial group of order p^3 with odd exponent p^2 .

In [4] it is shown how the information in this table can be derived from a bound on the Schur multiplier due to Gaschütz, Neubüser and Yen [5]. Since inequality (2) is slightly sharper than the bound of Gaschütz et. al., it too has ramifications for the classification of p-groups by corank. Some of these are listed in the following proposition. An interesting corollary to the proposition is that, for any given prime p and integer $t \geq 1$, there are only finitely many p-groups G with $\operatorname{corank}(G) = t$.

Proposition 3. Let G be a non-cyclic d-generator group of order p^n , with commutator subgroup [G,G] of order p^c , and Frattini subgroup $[G,G]G^p$ of order p^a . Suppose that the abelianisation G^{ab} has exponent p^e , and that the central quotient G/Z(G) is a δ -generator group. Furthermore, suppose that $\operatorname{corank}(G) = t$ where $t \geq 1$. Then:

- (i) $0 \le c \le t$.
- (ii) $c \le a \le \sqrt{2t-c}$.
- (iii) $2 \le d \le \frac{2(t+a)-a^2-3c}{a-c}$ whenever $a \ne c$.
- (iv) $2 \le d \le t + 2 \frac{a^2 + a}{2}$ whenever a = c .
- (v) $\frac{a^2-2a+(d+3)c+ad-2(t+1)}{2c-1} \leq \delta \leq d$ whenever $c \neq 0$.
- (vi) $1 \le e \le \frac{2t 2(d + 1 \delta)c d(a c 1) (a^2 a) 2\max\{0, \delta 2\}}{d}$.
- (vii) $\frac{1+\sqrt{1+4t}}{2} \le n \le \frac{2t+a(c+e)+2(\delta-1)c-2\max\{0,\delta-2\}}{c+e+a-1}$.

Proof. Note that $a \ge c \ge 0$, $d \ge \delta \ge 0$, $e \ge m/d \ge 1$ and $d \ge 2$. On substituting n = a + d, m = a + d - c into (2) we obtain

$$a^{2} - a \le 2(t - (d+1-\delta)c) + d(c+1-a-e) - 2\max\{0, \delta-2\}.$$
(8)

We derive the inequality

$$a^{2} - a \le 2(t - c) - (a - c)(d - 1) - 2\max\{0, \delta - 2\}$$

$$\tag{9}$$

from (8) by substituting $d \ge \delta$, $e \ge m/d$. Since $a^2 - a \ge 0$, inequality (9) implies (i). Since $d - 1 \ge 1$, inequality (9) implies $a^2 \le 2t - c$, from which we deduce (ii). We also deduce (iii) from (9). On substituting a = c, e = 1, $\delta \ge 2$ into (8), we obtain

$$d + (d - \delta)(a - 1) \le t + 2 - \frac{a^2 + a}{2}.$$
 (10)

The inequality $\delta \geq 2$ corresponds to the fact [2] that no non-trivial cyclic group is itself a central quotient. Inequality (10) implies (iv). Inequality (9) implies (v), the condition $c \neq 0$ being used to obtain $\delta \geq 2$. Inequality (8) implies (vi) and the right-hand inequality of (vii). The left-hand inequality of (vii) follows immediately from the definition of corank. \Box

Corollary 4. (i) For each prime p and integer $t \ge 0$ there exists at least one p-group with corank equal to t.

(ii) For each prime p and integer $t \ge 1$ there are only finitely many p-groups with corank equal to t

Proof. The formula for the Schur multiplier of a direct product [2], namely $M(G \times H) \cong M(G) \oplus M(H) \oplus (G^{ab} \otimes H^{ab})$, can be used to show that the abelian group $(C_p)^{t-1} \times C_{p^2}$ has corank equal to t for each $t \geq 1$. Any elementary abelian group has corank equal to 0. This proves part (i).

Suppose that G is a p-group with $\operatorname{corank}(G) = t \geq 1$. Proposition 3 implies that the order of G is bounded by a number, say f(t), that depends only on t. There are only finitely many groups of order at most f(t). This proves part (ii). \square

The following modification to the definition of corank provides a single numerical parameter for measuring how far a p-group 'deviates' from being elementary abelian.

Definition The relative corank of a finite p-group G is the number

$$\operatorname{rcrank}(G) = \frac{\operatorname{corank}(G)}{\log_p |G|}.$$

Thus the relative corank is a rational number lying in the range

$$0 \ \leq \ \operatorname{rcrank}(G) \ \leq \ \frac{\log_p|G|-1}{2}.$$

Proposition 3(ii) shows that groups with a small relative corank also have a relatively small Frattini subgroup. But relative corank captures more than the size of the Frattini subgroup. For example, the dihedral and quaternion groups of order eight have $\operatorname{rcrank}(D) = 2/3$ and $\operatorname{rcrank}(Q) = 1$. For certain families of groups it is fairly straightforward to compute the relative corank. For instance, letting ES(p,k) denote an arbitrary extraspecial p-group of order p^{2k+1} , we have:

$$\begin{split} &\operatorname{rcrank}((C_p)^n)=0,\\ &\operatorname{rcrank}(C_{p^n})=\frac{n-1}{2},\\ &\operatorname{rcrank}((C_p)^{n-2}\times C_{p^2})=\frac{n-1}{n},\\ &\operatorname{rcrank}((C_{p^2})^{n/2})=\frac{n}{4},\\ &\operatorname{rcrank}(ES(p,k))=1,\ \ \text{for}\ k\geq 2,\\ &\operatorname{rcrank}(ES(p,k)\times ES(p,k))=2+\frac{1}{4k+2},\ \ \text{for}\ k\geq 2. \end{split}$$

To obtain the last two calculations we have used the description of the Schur multipliers of extraspecial p-groups given in [2], together with the following simple lemma whose proof is left to the reader.

Lemma 5. Let G and H be groups of orders p^n and p^m . Then

$$\operatorname{rcrank}(G \times H) = \frac{n}{n+m} \operatorname{rcrank}(G) + \frac{m}{n+m} \operatorname{rcrank}(H) + \frac{nm - \log_p |G^{ab} \times H^{ab}|}{n+m}.$$

Acknowledgement. The first author was based at the Max-Planck-Institut für Mathematik, Bonn during the course of this work. He would like to thank the Institute for its very generous hospitality.

References

- [1] Ya. G. Berkovich, 'On the order of the commutator subgroup and Schur multiplier of a finite p-group', J. Algebra, 144 (1991), 269-272.
- [2] F.R. Beyl and J. Tappe, *Group extensions, representations, and the Schur multiplicator*, Lecture Notes in Math., **958** (Springer-Verlag, 1982).
- [3] G. Ellis, 'A bound for the derived and Frattini subgroups of a prime-power group', *Proc. Amer. Math. Soc.*, **126** No. 9 (1998), 2513-2523.
- [4] G. Ellis, 'On the Schur multiplier of p-groups', Comm. Algebra, to appear.
- [5] W. Gaschütz, J. Neubüser and Ti. Yen, 'Über den Multiplikator von p-Gruppen', Math. Zeitschrift, 100 (1967), 93-96.
- [6] J. Wiegold, 'Commutator subgroups of finite p-groups', J. Australian Math. Soc., 10 (1969), 480-484.
- [7] X. Zhou, On the order of Schur multipliers of finite p-groups, Comm. Algebra, 22 no. 1 (1994), 1-8.

Max-Planck-Institut Für Mathematik, Gottfried-Claren-Strasse 26, D-53225 Bonn, Germany. and Department of Mathematics, National University of Ireland, Galway,

E-mail: graham.ellis@nuigalway.ucg.ie

Galway, Ireland.

School of Mathematics, Cardiff University, Senghenydd Road, Cardiff CF2 4YH, Wales.