Enumerating prime-power homotopy k-types

Graham Ellis

Mathematics Department, University College Galway, Ireland (e-mail: graham.ellis@ucg.ie)

January 1998

1 Introduction

A fundamental problem in algebraic topology is the classification of homotopy types of polyhedra [2]. In this article we use classical techniques to enumerate particular families of such homotopy types. Recall [1] [2] that a homotopy k-type is the class of all topological spaces that are homotopy equivalent to some given connected polyhedron X whose homotopy groups $\pi_i X$ are trivial for $i \geq k+1$. We define the order of such a k-type to be the product $|\pi_1 X| \times |\pi_2 X| \times ... \times |\pi_k X|$ of the orders of the homotopy groups of X, and for integers $k, m \geq 1$ we denote by $\Lambda(k, m)$ the number of homotopy k-types of order m. Note that $\Lambda(1, m)$ is equal to the number of groups of a given order m. Higman [5] and Sims [6] have shown that the number of groups of prime-power order p^n is

$$\Lambda(1, p^n) = p^{\frac{2}{27}n^3 + O(n^{\frac{8}{3}})}. (1)$$

Our main result is the following higher-dimensional analogue of this estimate.

Theorem 1. For integers $k \geq 2$, $n \geq 1$ and p a prime, the number of homotopy k-types of order p^n is

$$\Lambda(k,p^n) = p^{\frac{(k+1)^{k+1}}{(k+1)!(k+2)^{k+2}}n^{k+2} + O(n^{k+1})}.$$

Thus, for large n, there are roughly $p^{\frac{9}{512}n^4}$ homotopy 2-types of order p^n ; there are roughly $p^{\frac{32}{9375}n^5}$ homotopy 3-types of order p^n , and so on.

In the proof of Theorem 1 we use the spectral sequence of a fibration to show that a high proportion of homotopy k-types X of order p^n have homotopy groups $\pi_i X$ that are elementary abelian in dimensions i = 1, k and trivial in dimensions $i \neq 1, k$.

Throughout the article p denotes a prime, and $\binom{n}{i}$ denotes the coefficient of x^i in the polynomial $(x+1)^n$.

I would like to thank the referee for helpful comments on this work.

2 Cohomological bounds

We need the following bound on the order of the qth cohomology $H^q(X, \mathbf{Z}_p)$ of a prime-power homotopy k-type X with trivial coefficients in the integers modulo p. (The corresponding integral homology bound is of independent interest; for k = 1 and q = 2 the homology bound is a much used result of J.A. Green [4] [8] on the Schur multiplier.)

Proposition 2. Let $k, q \ge 1$ be integers, and let X be a finite homotopy k-type of order p^n . Then

$$egin{align} \log_p |H^q(X,\mathbf{Z}_p)| & \leq inom{n+q-1}{q}, \ \log_p |H_q(X,\mathbf{Z})| & \leq \sum_{i=1}^q inom{n+i-1}{i} (-1)^{q-i}, \end{aligned}$$

and these bounds are attained when k = 1 and $\pi_1 X$ is elementary abelian.

Proof. Let $D^q(n)$ and $D_q(n)$ denote the ranks of the elementary abelian groups $H^q(E_n, \mathbf{Z}_p)$ and $H_q(E_n, \mathbf{Z})$, where E_n is the homotopy 1-type whose fundamental group is elementary abelian of

order p^n . The homology Künneth formula [7] applied to the direct product $E_n = E_1 \times E_{n-1}$ yields the difference equation:

$$D_q(n+1) = D_q(1) + \sum_{i=1}^n D_i(n), \quad D_q(1) = 1 \text{ for odd } q, \quad D_q(1) = 0 \text{ for even } q.$$
 (2)

The Universal Coefficient Theorem [7] implies the relationship

$$D^{q}(n) = D_{q}(n) + D_{q-1}(n). (3)$$

It is readily verified that

$$D^q(n) = \binom{n+q-1}{q}, \quad D_q(n) = \sum_{i=1}^q \binom{n+i-1}{i} (-1)^{q-i}$$

is the unique solution to equations (2) and (3), and thus the bounds of the proposition are attained when k=1 and $\pi_1 X$ is elementary abelian. It remains to show that if $k \geq 1$ and $|X| = p^n$ then $|H^q(X, \mathbf{Z}_p)| \leq |H^q(E_n, \mathbf{Z}_p)|$ and $|H_q(X, \mathbf{Z})| \leq |H_q(E_n, \mathbf{Z})|$.

To obtain the cohomological inequality suppose that $\pi_k X \neq 0$ and let N be a submodule of $\pi_k X$ such that |N| = p and $G = \pi_1 X$ acts trivially on N. (For k = 1 recall that any non-trivial prime-power group has a central subgroup of prime order. For $k \geq 2$ note that if A is any non-trivial $\mathbf{Z}G$ -module, and if the orders of G and A are both finite powers of P, then there is a submodule of A of order P with trivial G-action. This is true because the submodule $Z_G(A) = \{a \in A : g.a = a \text{ for all } g \in G\}$ contains a non-zero element, the existence of which follows from the equation $|A| = |Z_G(A)| + \sum_{a \in T} |[a]|$ where $[a] = \{a' \in A : a' = g.a \text{ for some } g \in G\}$ and T is a set of representatives for the equivalence classes [a].)

We can assume that X is a CW-space. By attaching cells to X in dimensions greater than k we can construct an inclusion of homotopy k-types $X \hookrightarrow Y$ which induces isomorphisms $\pi_i X \cong \pi_i Y$ for i < k and $\pi_k Y \cong \pi_k X/N$. Thus $|Y| = p^{n-1}$. (In order to justify this construction it may be helpful to consider the categorical equivalence $X \mapsto SX$ between homotopy types and simplicial groups [3]. The Eilenberg-Mac Lane space K(N,k) with kth homotopy group isomorphic to N is represented by a normal simplicial subgroup SK(N,k) of SX, and the inclusion $X \hookrightarrow Y$ corresponds to the quotient homomorphism $SX \twoheadrightarrow SX/SK(N,k)$ of simplicial groups.) By modifying X up to homotopy type we obtain a fibration sequence

$$F \hookrightarrow X \rightarrow Y$$

the fibre of which is an Eilenberg-Mac Lane space F = K(N, k).

The spectral sequence of a fibration [7]

$$E_2^{ij} = H^i(Y, H^j(F, \mathbf{Z}_p)) \Rightarrow H^{i+j}(X, \mathbf{Z}_p)$$

yields

$$|H^{q}(X, \mathbf{Z}_{p})| = \prod_{i+j=q} |E_{\infty}^{i,j}| \le \prod_{i+j=q} |E_{2}^{i,j}| = \prod_{i+j=q} |H^{i}(Y, H^{j}(F, \mathbf{Z}_{p}))|.$$

Now $H^j(F, \mathbf{Z}_p)$ is bijective with the set $[K(\mathbf{Z}_p, k), K(\mathbf{Z}_p, j)]$ of homotopy classes of maps $K(\mathbf{Z}_p, k) \to K(\mathbf{Z}_p, j)$ between Eilenberg-Mac Lane spaces. So if $j \geq k$ then, by repeated application of the loop functor [7], we see that $H^j(F, \mathbf{Z}_p) = [K(\mathbf{Z}_p, k), K(\mathbf{Z}_p, j)] = [\Omega^{k-1}K(\mathbf{Z}_p, k), \Omega^{k-1}K(\mathbf{Z}_p, j)] = [K(\mathbf{Z}_p, 1), K(\mathbf{Z}_p, j-k+1)] = H^{j-k+1}(N, \mathbf{Z}_p) \leq \mathbf{Z}_p$. Furthermore, $H^0(F, \mathbf{Z}_p) = \mathbf{Z}_p$ and $H^j(F, \mathbf{Z}_p) = 0 \leq \mathbf{Z}_p$ if 0 < j < k. Hence

$$|H^q(X,\mathbf{Z}_p)| \leq \prod_{i+j=q} |H^i(Y,\mathbf{Z}_p)| = |H^q(Y imes K(N,1),\mathbf{Z}_p)|$$

where the last equality follows from the Künneth formula for cohomology.

An easy inductive argument gives $|H^q(X, \mathbf{Z}_p)| \leq |H^q(E_n, \mathbf{Z}_p)|$. The homological inequality is proved in a similar way. \square

Proposition 2 generalizes to arbitrary prime-power coefficients. We need the cohomological version.

Proposition 3. Let X be a homotopy k-type of order p^n . Let A be a finite $\mathbf{Z}\pi_1X$ -module of order p^a . Then for any integer $q \geq 1$ we have

$$\log_p |H^q(X, A)| \le a \times \binom{n+q-1}{q}.$$

This bound is attained if k = 1 and both $\pi_1 X$ and A are elementary abelian groups (with $\pi_1 X$ acting trivially on A).

Proof. There exists a submodule B of A such that B has order p and trivial $\pi_1 X$ -action (see above). The cohomology coefficient sequence [7]

$$\cdots \to H^q(X,B) \to H^q(X,A) \to H^q(X,A/B) \to \cdots$$

yields the inequality $|H^q(X,A)| \leq |H^q(X,B)| \times |H^q(X,A/B)|$. Repeated application of this argument gives $|H^q(X,A)| \leq |H^q(X,B)|^a$. The required inequality then follows from Proposition 2.

3 Proof of the theorem

Let $k \geq 2$ and let X be a homotopy k-type represented by a CW-space. By attaching cells to X in dimensions greater than k, we can produce an inclusion $X \hookrightarrow \overline{X}$ with \overline{X} a homotopy (k-1)-type; there are isomorphisms $\pi_i X \cong \pi_i \overline{X}$ for i < k. It is well-known [7] that the homotopy k-type X determines, and is uniquely determined by, the homotopy (k-1)-type \overline{X} , the $\mathbf{Z}\pi_1 \overline{X}$ -module $\pi_k X$ and a cohomology class $\kappa \in H^{k+1}(\overline{X}, \pi_k X)$. The class κ is said to be a Postnikov invariant of X. Our estimate for $\Lambda(k, p^n)$ is obtained by estimating the number of possibilities for \overline{X} , $\pi_k X$ and κ .

It is convenient to work with logarithms to the base p. We thus fix the prime p once and for all, and define

$$\lambda(k,n) = \log_p(\Lambda(k,p^n)),$$
 $\alpha(i,j) = \max_{\overline{X} = p^i} \{ \text{number of } \mathbf{Z}\pi_1\overline{X} - \text{modules of order } p^j \},$

where in the last definition \overline{X} ranges over all homotopy (k-1)-types of fixed order p^i . We also define

$$\kappa^{k+1}(i,j) = \max_{\overline{X} = p^i, |A| = p^j} \log_p |H^{k+1}(\overline{X},A)|$$

where A ranges over all $\mathbf{Z}\overline{X}$ -modules of order p^j , and \overline{X} ranges over all homotopy (k-1)-types of order p^i .

This notation leads to the following inequality

$$p^{\lambda(k,n)} \le \sum_{i=0}^{n} p^{\lambda(k-1,i) + \alpha(i,n-i) + \kappa^{k+1}(i,n-i)}$$

from which we derive

$$\lambda(k,n) \le \log_p(n+1) + \max_{0 \le i \le n} \{ \lambda(k-1,i) + \alpha(i,n-i) + \kappa^{k+1}(i,n-i) \}.$$
 (4)

Lemma 4. We have

$$\max_{0 \le i \le n} \{ \lambda(k-1,i) + \alpha(i,n-i) + \kappa^{k+1}(i,n-i) \} = \frac{(k+1)^{k+1}}{(k+1)!(k+2)^{k+2}} n^{k+2} + O(n^{k+1}).$$

Proof. Since the semi-direct product of a group $G = \pi_1 \overline{X}$ of order at most p^i with a **Z**G-module A of order p^{n-i} is a group of order at most p^n , we have the crude inequality

$$\alpha(i, n - i) \le \lambda(1, n). \tag{5}$$

Furthermore, estimate (1) can be rewritten as

$$\lambda(1,n) = \frac{2}{27}n^3 + O(n^{\frac{8}{3}}). \tag{6}$$

Proposition 3 gives us

$$\kappa^{k+1}(i, n-i) = (n-i) \times {i+k \choose k+1} = (n-i)(\frac{i^{k+1}}{(k+1)!} + f_k(i))$$
(7)

where $f_k(i)$ is a polynomial in i of degree k. The polynomial $f_k(i)$ is independent of n. The derivative of $\kappa^{k+1}(i, n-i)$ with respect to i is

$$\kappa^{k+1}(i,n-i)' = \frac{(k+1)ni^k - (k+2)i^{k+1}}{(k+1)!} + (n-i)f'_k(i) - f_k(i).$$

When n is large with respect to k, and when $i = \frac{n(k+1)}{k+2}$, the derivative $\kappa^{k+1}(i, n-i)'$ is 'approximately' zero, $\kappa^{k+1}(i, n-i)' = 0 + O(n^k)$. This approximate zero corresponds to an approximate maximum of $\kappa^{k+1}(i, n-i)$. Hence

$$\max_{0 \le i \le n} \kappa^{k+1}(i, n-i) = \frac{(k+1)^{k+1}}{(k+1)!(k+2)^{k+2}} n^{k+2} + O(n^{k+1}).$$
(8)

The lemma follows from (5), (6) and (8). \square

Let us now turn to the proof of Theorem 1. Inequality (4) and Lemma 4 combine to give

$$\Lambda(k, p^n) < p^{\frac{(k+1)^{k+1}}{(k+1)!(k+2)^{k+2}} n^{k+2} + O(n^{k+1})}.$$

But consider those homotopy k-types with $\pi_1 X = E(m)$, $\pi_k X = E(n-m)$ and $\pi_i X = 0$ for $i \neq 1, k$, where m is equal to the integer part of $\frac{n(k+1)}{k+2}$, and where E(m) denotes the elementary abelian group of order p^m . Equation (8) implies that there are at least $p^{\frac{(k+1)^{k+1}}{(k+1)!(k+2)^{k+2}}n^{k+2}+O(n^{k+1})}$ such homotopy types. This proves the theorem.

References

- [1] Baues, H.J.: Combinatorial homotopy and 4-dimensional complexes. (de Gruyter Expos. Math. vol. 2) Berlin New York: de Gruyter 1991.
- [2] Baues, H.J.: Homotopy types. In: James, I.M. (eds.) Handbook of Algebraic Topology. Amsterdam: Elsevier 1995.

- [3] Curtis, E.B.: Simplicial homotopy theory. Advances in Math. 6, 107-209 (1971).
- [4] Green, J.A.: On the number of automorphisms of a finite group. Proc. Royal Society A 237, 574-81 (1956).
- [5] Higman, G.: Enumerating p-groups I: Inequalities. Proc. London Math. Soc. (3) $\mathbf{10}$, 24-30 (1960).
- [6] Sims, C.C.: Enumerating p-groups. Proc. London Math. Soc. (3) 15, 151-66 (1965).
- [7] Spanier, E.H.: Algebraic Topology. New York: McGraw-Hill 1966.
- [8] Wiegold, J.: Multiplicators and groups with finite central factor-groups. Math. Zeit. **89**, 345-7 (1965).