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1 Introduction

A fundamental problem in algebraic topology is the classification of homotopy types of polyhedra
[2]. In this article we use classical techniques to enumerate particular families of such homotopy
types. Recall [1] [2] that a homotopy k-type is the class of all topological spaces that are homotopy
equivalent to some given connected polyhedron X whose homotopy groups m; X are trivial for
i > k+ 1. We define the order of such a k-type to be the product |m X| x |meX| X ... X |7 X| of the
orders of the homotopy groups of X, and for integers k,m > 1 we denote by A(k, m) the number of
homotopy k-types of order m. Note that A(1,m) is equal to the number of groups of a given order
m. Higman [5] and Sims [6] have shown that the number of groups of prime-power order p" is

2 8
A(1,p") = par™ TS, (1)

Our main result is the following higher-dimensional analogue of this estimate.

Theorem 1. For integers k > 2,n > 1 and p a prime, the number of homotopy k-types of order
p" is

(k+1)k+1
Ak, p") = pW”k+2+O(nk+l).

Thus, for large n, there are roughly p%"4 homotopy 2-types of order p™; there are roughly p%"E
homotopy 3-types of order p”, and so on.

In the proof of Theorem 1 we use the spectral sequence of a fibration to show that a high
proportion of homotopy k-types X of order p™ have homotopy groups m; X that are elementary
abelian in dimensions ¢ = 1,k and trivial in dimensions ¢ # 1, k.

Throughout the article p denotes a prime, and (?) denotes the coefficient of £ in the polynomial
(x+1)".

I would like to thank the referee for helpful comments on this work.

2 Cohomological bounds

We need the following bound on the order of the gth cohomology H%(X,Z,) of a prime-power
homotopy k-type X with trivial coefficients in the integers modulo p. (The corresponding integral
homology bound is of independent interest; for £ = 1 and ¢ = 2 the homology bound is a much
used result of J.A. Green [4] [8] on the Schur multiplier.)

Proposition 2. Let k,q > 1 be integers, and let X be a finite homotopy k-type of order p". Then

—1
log, |HY(X, Zy)| < ("‘*q )
q

q .
n+i—1 i
logp |HQ(X7 Z)' < Z ( i )(_1)q 17
=1
and these bounds are attained when k = 1 and w1 X is elementary abelian.

Proof. Let D%(n) and Dy(n) denote the ranks of the elementary abelian groups H¢(E,,Z,) and
H,(E,,Z), where E, is the homotopy 1-type whose fundamental group is elementary abelian of



order p". The homology Kiinneth formula [7] applied to the direct product E,, = E; x E,,_1 yields
the difference equation:

n
Dy(n+1) =Dy(1) + ZDi(n), Dy(1) =1 for odd q, Dy(1) = 0 for even q. (2)
=1

The Universal Coefficient Theorem [7] implies the relationship
D(n) = Dy(n) + Dg-1(n). (3)

It is readily verified that

Dq(n):<n+q—1) Z<n+z—1> _1)q_i

q =1

is the unique solution to equations (2) and (3), and thus the bounds of the proposition are attained
when k£ = 1 and 7 X is elementary abelian. It remains to show that if £ > 1 and |X| = p" then
|HY(X, Z,)| < |HI(E,,Z,)| and |H,(X, Z)] < |H,(E,,2).

To obtain the cohomological inequality suppose that 73z X # 0 and let N be a submodule of
7 X such that |[N| = p and G = m X acts trivially on N. (For k = 1 recall that any non-trivial
prime-power group has a central subgroup of prime order. For k& > 2 note that if A is any non-trivial
Z(G-module, and if the orders of G and A are both finite powers of p, then there is a submodule of
A of order p with trivial G-action. This is true because the submodule Zg(A) ={a € A : g.a =
a for all ¢ € G} contains a non-zero element, the existence of which follows from the equation
|A| = |Zg(A)| + X ger |la]| where [a] = {a' € A : d' = g.a for some g € G} and T is a set of
representatives for the equivalence classes [a].)

We can assume that X is a CW-space. By attaching cells to X in dimensions greater than k we
can construct an inclusion of homotopy k-types X < Y which induces isomorphisms m; X & 7;Y
for i < k and 7Y = 7, X/N. Thus |Y| = p"~!. (In order to justify this construction it may be
helpful to consider the categorical equivalence X — SX between homotopy types and simplicial
groups [3]. The Eilenberg-Mac Lane space K (N, k) with kth homotopy group isomorphic to N is
represented by a normal simplicial subgroup SK (N, k) of SX, and the inclusion X < Y corresponds
to the quotient homomorphism SX—+»SX/SK(N,k) of simplicial groups.) By modifying X up to
homotopy type we obtain a fibration sequence

F— X—>Y

the fibre of which is an Eilenberg-Mac Lane space F' = K(N, k).
The spectral sequence of a fibration [7]

E;j = HZ(YaH](Fa ZP)) = Hi+j(Xa ZP)

yields

(X2, = T 1Bl < T1 18] = [ Y, 5 (FZ,)

i+j=q i+j=q i+j=q

Now HY(F, Zy) is bijective with the set [K (Z,, k), K (Zy, j)] of homotopy classes of maps K (Zy, k) —
K(Z,,j) between Eilenberg-Mac Lane spaces. So if j > k then, by repeated application of the
loop functor [7], we see that HY(F,Z,) = [K(Zp, k), K(Zy,7)] = ¥ 1K (Zp, k), QF~ 1K( 1)) =
[K(Zp,1),K(Zp,j—k+1)] = H=**Y(N,Z,) < Z,. Furthermore, H*(F,Z,) = Z, and H’ (F Z p) =
0<Z,if 0 <j<k. Hence

|HY(X,Z,)| < ] [H'(Y,Zp)| = [HY(Y x K(N,1),Zp)|
i+j=q



where the last equality follows from the Kunneth formula for cohomology.
An easy inductive argument gives |H4(X,Z,)| < |HY(E,,Z,)|- The homological inequality is
proved in a similar way. O

Proposition 2 generalizes to arbitrary prime-power coefficients. We need the cohomological
version.

Proposition 3. Let X be a homotopy k-type of order p™. Let A be a finite Zm X -module of order
p®. Then for any integer q > 1 we have

-1
log, | HY(X, A)| < a x ("*q )
q

This bound is attained if k = 1 and both m1 X and A are elementary abelian groups (with m X
acting trivially on A).

Proof. There exists a submodule B of A such that B has order p and trivial 7 X-action (see above).
The cohomology coefficient sequence [7]

-— HY(X,B) -» HY(X,A) - HY(X,A/B) —

yields the inequality |[HY(X, A)| < |HY(X,B)| x |H1(X, A/B)|. Repeated application of this ar-
gument gives |HY(X, A)| < |H?(X, B)|*. The required inequality then follows from Proposition 2.
a

3 Proof of the theorem

Let £ > 2 and let X be a homotopy k-type represented by a CW-space. By attaching cells to X
in dimensions greater than k, we can produce an inclusion X < X with X a homotopy (k—1)-type;
there are isomorphisms m; X = m; X for i < k. It is well-known [7] that the homotopy k-type X
determines, and is uniquely determined by, the homotopy (k — 1)-type X, the Zm; X-module 7, X
and a cohomology class k € H*T1(X, 1, X). The class & is said to be a Postnikov invariant of X.
Our estimate for A(k,p") is obtained by estimating the number of possibilities for X, 7, X and &.

It is convenient to work with logarithms to the base p. We thus fix the prime p once and for
all, and define

A(k,n) = log,(A(k,p")),
a(i,j) = max{number of Zm; X —modules of order p’},
X=p*
where in the last definition X ranges over all homotopy (k — 1)-types of fixed order p’. We also
define
W) = max  log, [HEFL(X, )|

X=pi,|A|=pi
where A ranges over all ZX-modules of order p’, and X ranges over all homotopy (k — 1)-types of
order p°.
This notation leads to the following inequality

n
)\(Ic n) < Z AEk—1,3)+a(i,n—i)+xFt1(in—i)
=0

from which we derive

A(k,n) <logy(n+1) + lgzz)%{)\( —1,i) + a(i,n —i) + ¥ (i, n — i)} (4)



Lemma 4. We have

max {A(k — 1,4) + a(i,n — i) + Kk+1(z-’n _i)y= (k + 1)k+1

k+2 k+1
0<i<n R G

Proof. Since the semi-direct product of a group G = m; X of order at most p’ with a ZG-module A
of order p"~" is a group of order at most p™, we have the crude inequality

a(i,n —1) < A(1,n). (5)

Furthermore, estimate (1) can be rewritten as

A(Ln) = %n?’ + o). (6)

Proposition 3 gives us

7 ik 1
W — ) = (1) (kj’j) = (0= )y + @) (”

where fi(i) is a polynomial in i of degree k. The polynomial f () is independent of n. The
derivative of k¥*1(i,n — i) with respect to i is

(k + D)nik — (k + 2)ik+!
(k+ 1)!

/ﬁ)k+1 (Z

+ (n = 0) fi (i) — fu(0)-

,n_i)I:

n(k+1)
k+2
imately’ zero, K¥*1(i,n — i)’ = 0 4+ O(n*). This approximate zero corresponds to an approximate

maximum of x*¥*1(i,n — ). Hence

When n is large with respect to k, and when 7 = the derivative k¥*1(i,n — 1)’ is ‘approx-

k4 1)kt
max k¥ (i,n —i) = (k+1)

k+2 k+1
0<i<n (k+ D)k + 2)k+2” + O(n"™). (8)

The lemma follows from (5), (6) and (8). O

Let us now turn to the proof of Theorem 1. Inequality (4) and Lemma 4 combine to give

(k+1)k+1 k2 ot
L) k12)k T2 +0(n
A(kapn) < p(k+1)!(k+2)k+2 ( ).

But consider those homotopy k-types with mX = E(m), mX = E(n — m) and m;X = 0 for
n(k+1)
k2

1 # 1, k, where m is equal to the integer part of and where F(m) denotes the elementary

wnlwm_}_o(nkﬂ)
abelian group of order p™. Equation (8) implies that there are at least p(k+D!(k+2)k+2

such homotopy types. This proves the theorem.
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