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COMPUTATIONAL HOMOTOPY OF FINITE REGULAR

CW-SPACES

GRAHAM ELLIS and FINTAN HEGARTY

Abstract
We describe a computational approach to the basic homo-

topy theory of finite regular CW-spaces, paying particular at-
tention to spaces arising as a union of closures of n-cells with
isomorphic face posets. Deformation retraction methods for
computing fundamental groups, integral homology and persis-
tent homology are given in this context. The approach is not
new but our account contains some new features: (i) certain
computational advantages of a permutahedral face poset are
identified and utilized; (ii) the notion of lattice complex is in-
troduced as a data type for implementing a general class of
regular CW-spaces (including certain pure cubical and pure
permutahedral subspaces of flat manifolds such as Rn); (iii)
zig-zag homotopy retractions are introduced as an initial pro-
cedure for reducing the number of cells of low-dimensional lat-
tice spaces; more standard discrete vector field techniques are
applied for further cellular reduction; (iv) a persistent homol-
ogy approach to feature recognition in low-dimensional digital
images is illustrated; (v) fundamental groups are computed;
(vi) algorithms are implemented in the gap system for compu-
tational algebra, allowing for their output to benefit from the
system’s vast library of efficient algebraic procedures.

Dedicated to Hvedri Inassaridze on his 80th birthday

1. Introduction

There is growing interest in efficient computer methods for calculating homo-
topical and homological properties of spaces. This is motivated by topics in applied
topology such as topological data analysis [1], rigorous numerical analysis of dy-
namical systems [18], topological robotics [4], image analysis [18] and a range of
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other applied topics [6, 7, 5]. It is also motivated by computational questions in
the cohomology of groups [9] and theoretical algebraic topology [23].

In this paper we provide a self-contained account of an approach to computing
homotopy theoretic properties of finite regular CW-spaces involving a large number
of cells, paying particular attention to those spaces arising as a union of closures of
n-cells with isomorphic face posets. The approach, which relies on a heavy use of de-
formation retracts and discrete vector fields, underlies the capd homology software
[20, 21] for computer assisted proofs in dynamical systems and has been described
in that context in [18, 14, 15] and elsewhere. It also underlies the first author’s
software package [8] for group cohomology and related homotopical algebra. The
approach complements that of the software package plex [22] which is aimed pri-
marily at persistent homology computations of filtered simplicial complexes and
is based on efficient algorithms for row reduction of sparse matrices. It also com-
plements the kenzo software package [23] which is aimed primarily at homology
and homotopy groups of simply connected spaces arising in theoretical algebraic
topology. However, in common with kenzo, we give a central computational role
to deformation retracts and their induced chain maps.

An excellent treatment of computational homology has already been given in the
textbook [18]. The approach described in this paper is essentially the same as that
in [18] but our account emphasizes some new computational features that may be
of general interest. In particular:

(i) We introduce the notion of lattice complex as a data type for implementing
a range of algorithms on a general class of regular CW-spaces which we call
lattice spaces. The class includes certain pure cubical and pure permutahedral
subspaces of Rn. The data type can also be used to implement certain pure
cubical and permutahedral subspaces of other flat manifolds Rn/G.

(ii) We identify two computational advantages of permutahedral cells over cubical
cells. The first is that an n-cell in the standard permutahedral tessellation
of Rn has fewer neighbours than an n-cell in the standard cubical tessella-
tion. This allows us to extend a practical procedure for obtaining ‘minimal’
deformation retracts of cubical lattice spaces of dimension 6 3 to the per-
mutahedral lattice spaces of dimension n 6 4. The second advantage is that
our permutahedral lattice spaces are manifolds, and thus behave nicely with
respect to taking complements.

(iii) We describe a persistent homology approach to feature recognition in low-
dimensional digital images.

(iv) We apply zig-zag homotopy retractions as an initial procedure for reducing
the number of cells of low-dimensional lattice spaces. More standard discrete
vector field techniques are applied for further cellular reduction (cf. [15]).

(v) We compute presentations of fundamental groups of finite regular CW-spaces.
Furthermore, we demonstrate how these presentations can be used to compute
strong invariants of the fundamental group such as the integral homology of
its nilpotent quotients, and the abelian invariants of its low-index subgroups.
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(vi) We implement our algorithms in the gap system for computational algebra.
The output of our algorithms (which takes the form of finitely presented
groups, abelian groups, graded algebras etc.) can thus benefit from gap’s
vast library of efficient procedures for symbolic algebra. We also benefit from
gap’s sophisticated method selection mechanism for selecting appropriated
algorithms when computing topological properties for a range of high level
data types.

We begin by recalling some basic theory of CW-spaces, and throughout we em-
phasize the suitability of the classical data types of algebraic topology (such as
regular CW-space, cubical space, deformation retract, simple homotopy collapse,
discrete vector field, relative homology group ...) and the importance of classical
results (such as Propositions 2.1, 2.2 and Theorem 9.1) for implementing efficient
and modular software. As one compelling motivation for the development of such
software we include toy examples that illustrate a standard general approach to
topological data mining based on persistent homology.

2. Finite regular CW-spaces

A good introduction to the theory of CW-spaces can be found in [19]. Recall
that a CW-space X is regular if every cell is attached by a map which restricts to
a homeomorphism on the boundary of the cell. Recall that X is finite if it has only
finitely many cells.

We shall restrict attention to finite regular CW-spacesX because their cell struc-
ture, and hence their homotopy type, can be completely encoded in terms of a finite
collection of binary valued incidence numbers and hence can easily be stored on a
computer. We let Xk denote the k-skeleton of X , and ekj the jth cell of dimension

k. Thus ekj is a subspace of X homeomorphic to an open Euclidean ball.

The space X can be represented as a sequence of lists R0, R1, ..., Rn, where the
jth term of the list Rk = {rk1 , r

k
2 , ...} records those (k−1)-dimensional cells ofX that

lie in the boundary of the jth k-dimensional cell of X . For algorithmic efficiency, it
is best to encode some additional redundant information in rkj , namely the list of
those (k+1)-dimensional cells of X whose boundaries contain the jth k-dimensional
cell of X .

We define the closure of a cell ekj in X to be the smallest CW-subspace ekj in X

containing ekj . More generally, we define the closure of a subset Y ⊂ X to be the

smallest CW-subspace Y in X containing Y .
The sequence R0, ..., Rn is just an encoding of the partial order on the set of cells

ekj in X given by setting ekj < ek
′

j′ if k < k′ and ekj lies in the closure of ek
′

j′ . This face
poset determines the regular CW-space X up to homeomorphism. Figure 1 shows
the Hasse diagram of the face poset of a CW-decomposition of the 2-sphere.

We say that a cell ekj is maximal if it does not lie in the closure of any (k + 1)-

dimensional cell. We define the complement of a maximal cell ekj in X to be the

CW-space X \ ekj arising as the closure of X \ ekj .

Definition 2.1. We define the contact complex of a maximal cell ekj in X to be
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Figure 1: Regular CW-decomposition of the 2-sphere and corresponding face poset

the CW-space Cont(ekj ) = ekj ∩X \ e
k
j arising as the intersection of the closure and

complement of ekj . (See Figure 2.)

ekj

Cont(ekj )

Figure 2: A cell ek and its contact complex Cont(ek)

Definition 2.2. We shall say that a maximal cell ekj in X is redundant if its contact

complex Cont(ekj ) is a contractible CW-space.

Definition 2.2 is motivated by J.H.C. Whitehead’s theory of simple homotopy,
an account of which can be found in [3]. In this theory a CW-space Y is said to be
obtained from a CW-space X by an elementary collapse, X ց Y , if

1. Y is a CW-subspace of X ,

2. X = Y ∪ en ∪ en−1 with en, en−1 cells not in Y ,

3. there exists a standard ball pair (Dn, Dn−1), homeomorphic to (In−1×I, In−1×
1) with I = [0, 1], and a characteristic map φ : Dn → X for en which maps
Dn−1 to Y n−1,

4. the restriction of φ to the closure ∂Dn \Dn−1 of the boundary of Dn minus
Dn−1 is a characteristic map for en−1 .

Simple homotopy is a combinatorial approach to homotopy theory based on the
observation that Y is a deformation retract of X when X ց Y . (See [3] for details.)

If en is a redundant cell of a regular CW-space X then the contact complex
Cont(en) is homeomorphic to a standard ball Dn−1. Let en−1 denote the union of
those cells in the boundary of en not contained in Cont(en). Then en is homeomor-
phic to an open ball and X ց Y for Y the subspace of X obtained by removing en

and en−1. The following proposition summarizes this statement.
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Proposition 2.1. If ekj is a redundant maximal cell in the finite regular CW-space

X then the inclusion map X \ ekj →֒ X is a homotopy equivalence, and X \ ekj is a
deformation retract of X.

It can be computationally difficult to decide whether a given cell is redundant or
not. However, for certain regular CW-spaces X one can readily design an efficient
algorithm for recognising particular redundant cells in any CW-subspace of X . We
shall call such an algorithm a redundancy test for X . If a redundancy test is able
to recognise every redundant cell in any CW-subspace of X then we deem it to be
optimal. Proposition 2.1 yields the following two trivial algorithms.

Algorithm 2.1.
Input: a finite regular CW-space X , a CW-subspace A ⊂ X , and an (optimal)
redundancy test for X .
Output: a (minimal) CW-subspace X ′ ⊂ X which is a deformation retract of X
and which contains A.
Procedure:

initialise X ′ := X ;
while X ′ has a recognisably redundant maximal cell ekj not in A

set X ′ := X ′ \ ekj ;

Algorithm 2.2.
Input: a finite CW-space X , a non-empty CW-subspace A ⊂ X , and an (optimal)
redundancy test for X .
Output: a (maximal) CW-subspace X ′ ⊂ X which contains A as a deformation
retract.
Procedure:

initialise X ′ := A;
while X has a cell ekj which is recognisably a redundant maximal cell of

X ′ ∪ ekj

set X ′ := X ′ ∪ ekj ;

Recall that the cellular chain complex

C∗(X) : · · · → Ck(X)
∂k−→ Ck−1(X)→ · · · → C0(X)

of a finite regular CW-spaceX is constructed by taking Ck(X) to be the free abelian
group with free generators corresponding to the k-cells of X , and with boundary
homomorphisms given by

∂k(e
k
j ) =

∑

i

ǫkijb
k
ije

k−1
i

where

bkij =

{

1 if ek−1
i lies in the closure of ekj

0 otherwise.
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and

ǫkij =























0 when bkij = 0,
1 when k = 1, b1ij = 1, b1i′j = 1, i < i′,

−1 when k = 1, b1ij = 1, b1i′j = 1, i > i′,

±1 when k > 1, bkij = 1,with sign chosen to satisfy
the equation ∂k−1∂k = 0.

Given a CW-subspace A ⊂ X , the inclusion map induces a chain monomor-
phism C∗(A) →֒ C∗(X) which allows us to regard C∗(A) as a sub chain complex
of C∗(X). One defines C∗(X,A) = C∗(X)/C∗(A). The chain groups Ck(X,A) =
Ck(X)/Ck(A) are again free abelian with generators corresponding to those k-
dimensional cells of X not contained in A.

When X and the subspace A both have a large number of cells, it may be
impractical to represent the chain complexes C∗(X), C∗(A) on a computer and yet
be quite practical to represent the chain complex C∗(X,A).

For any abelian group A one defines the homology of the space X and pair (X,A)
as

Hk(X ;A) = Hk(C∗(X)⊗Z A) ,

Hk(X,A;A) = Hk(C∗(X,A)⊗Z A) .

The natural long exact sequence

· · · → Hk(A;A)→ Hk(X ;A)→ Hk(X,A;A)→ Hk−1(A;A)→ · · ·

together with the homotopy invariance of homology readily yields the following
standard computational tool.

Proposition 2.2. (i) Let X be a finite regular CW-space. Let X ′ ⊆ X be a
deformation CW-retract, and let A be a contractible CW-subspace of X ′. Then

Hk(X ;A) ∼= Hk(X
′, A;A), k > 1.

(ii) Let f : X →֒ Y be an inclusion of finite regular CW-spaces. Let X ′, A be as in
(i), let Y ′ be a deformation CW-retract of Y , and let B be a contractible CW-
subspace of Y ′ with A ⊂ B. Then the following commutative natural diagram

Hk(X ;A) //

∼=

��

Hk(Y ;A)

∼=

��

Hk(X
′, A;A) // Hk(Y

′, B;A)

exists for k > 1.

The statement of Proposition 2.2 needs a minor adjustment for the case k = 0.
We leave this to the reader.

The remainder of the paper is structured as follows. In Sections 3-7 we describe a
practical implementation of Algorithms 2.1 and 2.2 and Proposition 2.2 for a class of
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regular CW-spaces which we call lattice spaces. These CW-spaces admit particularly
efficient redundancy tests. Some details in Sections 3-7 are expressed through the
slightly more general notion of a tessellated space. In Sections 9 and 10 we describe
a more general homology implementation, based on the notion of discrete vector
field, for arbitrary finite regular CW-spaces. We give examples in which best results
are obtained using a mixture of the two implementations. Section 8 discusses the
computation of homology homomorphisms induced by non-cellular maps of spaces.
Section 11 describes a potential application to feature recognition in digital images.
In Section 12 we illustrate the user interface to the implementations.

3. Tessellated spaces and lattice complexes

We use the term tessellated space to mean a regular CW-space X such that for
some n > 0:

(i) X is the union of the closures of its n-cells and;

(ii) all closures of n-cells have face poset isomorphic to that of some fixed polytope.

For instance, all n-cells could be n-cubes, or they could all be n-simplices, or they
might all be n-permutahedra. We say that such a space has dimension n and that
the closure of any n-dimensional cell is a facet of the space. (We remark that our
use of the term facet is consistent with standard terminology. Cells in a CW-space
are homeomorphic to open balls. In contrast, for convex polytopes or polyhedra one
usually works with closed cells called faces. A facet of an (n+1)-dimensional convex
polytope or polyhedron is a face of dimension n. We think of an n-dimensional
tessellated space X as lying in the boundary of some ambient (n+ 1)-dimensional
space. We therefore view the closure of an n-cell in X as a facet of the ambient
(n+1)-dimensional space.) Thus a tessellated space X is the union of its facets. We
say that a tessellated space is finite if it has only finitely many facets.

The restrictions (i) and (ii) can lead to computational efficiencies. Such spaces
often admit a more efficient computer representation than that given in Section 2
for arbitrary finite regular CW-spaces. Furthermore, for low values of n such spaces
admit efficient redundancy tests for maximal cells.

Recall that a finite simplicial space X is a CW-subspace of a standard N -simplex
∆N . Recall that a cellular space is pure if all inclusion-maximal cells have common
dimension. A pure finite simplicial space is an example of a tessellated space.

Any pure CW-subspace of the standard N -cube IN = [0, 1]N is an example of
a tessellated space. A special class of such spaces - which we call a cubical lattice
space - will be of particular interest to us.

Let L be a lattice in Rn, i.e. an additive subgroup generated by n linearly inde-
pendent vectors in Rn. Any v ∈ L determines a Dirichlet-Voronoi cell

DL(v) = {x ∈ Rn : ||v − x|| 6 ||w − x|| for any w ∈ L,w 6= v}

from which Euclidean space Rn inherits the structure of a tessellated space with
facets the cells DL(v). We denote this tessellated space by Rn

L.
For the lattice C generated by n orthogonal vectors the facets of the tessellated

space Rn
C are combinatorially equivalent to an n-cube.
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To describe a second interesting lattice we identify Rn with the hyperplane in
Rn+1 consisting of all vectors whose coordinates sum to zero. Let P be the abelian
group in this hyperplane generated by the columns of the (n+ 1)× (n+ 1) matrix















−n 1 1 · · · 1
1 −n 1 · · · 1
1 1 −n · · · 1
...
1 1 1 · · · −n















.

The facets of the tessellated space Rn
P are combinatorially equivalent to the n-

dimensional convex polytope known as the permutahedron. See Figure 3.

Figure 3: 3-dimensional permutahedral facets. (Image reprinted from [24].)

Recall that an n-dimensional Bieberbach group G is a group of isometries that
act fixed-point freely and cocompactly on Rn. The quotient Rn/G is a flat manifold
with fundamental group G. Up to homeomorphism there are two such manifolds
for dimension n = 2: the torus and Klein bottle. There are ten such manifolds for
n = 3, and a list of Bieberbach groups in dimensions 4 or less is available in the
crystallographic groups catalogue [10]. Let L ⊂ Rn be a lattice with n linearly
independent generators and let G be some Bieberbach group whose action on Rn

preserves the lattice L. The CW-structure of Rn
L will be inhereted by the quotient

Rn/G. Those cases where the CW-structure on Rn/G is regular provide examples
of tessellated spaces with just finitely many facets. For example, the hexagonally
tessellated Klein bottle of Figure 4 can be constructed from the permutahedral
lattice L = P ⊂ R2 by taking G to be the group generated by a translation (sending
facet B to facet B′ in Figure 4) and a glide-reflection (sending facet A to facet A′

in Figure 4).
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A

B

A′

B′

Figure 4: A hexagonally tiled Klein bottle

Definition 3.1. We define a lattice space to be a union of finitely many facets in
Rn

L. We define a quotient lattice space to be a union of finitely many facets in the
quotient space Rn

L/G for any Bieberbach group G preserving L with regular CW-
quotient. A lattice space or quotient lattice space is said to be cubical if L = C and
permutahedral if L = P .

Note that any cubical lattice space can be embedded in some unit cube IN by
using a Gray code to identify vertices of X with vertices of IN . Such a space X is
thus an example of a pure CW-subspace of IN .

Any finite tessellated space X can be represented on a computer using the rep-
resentation of a finite regular CW-space described in Section 2. The maximal cells
have some common dimension n. The contact complex Cont(en) of a maximal cell
en is particularly easy to compute from the representation of X ; it consists of those
cells in the boundary of en that lie also in the boundary of at least one other n-cell.

The fact that all n-cells have isomorphic face poset can help in the implementa-
tion of efficient redundancy tests. Fix some maximal cell en. Let F denote the face
poset of the boundary ∂en of en. Thus F is the poset of a regular CW-structure on
the sphere Sn−1. Let P(F ) denote the set of those subposets of F that arise from
CW-subspaces of ∂en. If P(F ) is not too large then it should be possible to decide
and record, for each poset in P(F ), whether or not the corresponding CW-subspace
of ∂en is contractible. The contact complex Cont(e′n) of any maximal cell e′n has
face poset isomorphic to a poset in P(F ). Assuming that this isomorphism can
be quickly realised, we can use our pre-computed record of contractible posets in
P(F ) to quickly test the contractibility of Cont(e′n). Such a test is required in an
implementation of Algorithms 2.1 and 2.2.

For instance, if each facet en is an n-simplex then there are precisely k = 2n+1−2
cells in ∂en, and fewer than 2k posets in P(F ). So for n 6 4 it is practical to store
a list of all the contractible simplicial posets in P(F ). The poset F is isomorphic
to the poset of subsets of {0, 1, . . . , n} and by using a total order on the set of
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vertices of X one can efficiently compute this isomorphism. It should thus be quite
practical to implement Algorithms 2.1 and 2.2, with optimal redundancy tests, for
pure simplicial spaces of dimension 6 4.

Lattice spaces admit a computer representation that is more efficient than the
face poset representation for general regular CW-spaces. Given a lattice L in Rn,
we can choose a basis b1, . . . , bn ∈ L and represent any v ∈ L uniquely as a combi-
nation v = λ1b1 + · · ·+ λnbn with integer coordinates λi. Let X be the tessellated
space arising as a union of finitely many facets in Rn

L. By applying a translation
if necessary, we can assume that X is a union of facets DL(v) where v has only
positive integer coordinates λi with respect to the chosen basis. We can represent
X by an n-dimensional binary array A = (aλ1,λ2··· ,λn

) with

aλ1,λ2··· ,λn
=

{

1 if D(λ1b1 + · · ·+ λnbn) lies in X,
0 otherwise.

Our computer representation of X also needs to store some information about the
lattice L. For our algorithms the most appropriate extra information can be stored
as a finite set of integer vectors

BL := {λ = (λ1, . . . , λn) ∈ Zn : DL(0) ∩DL(λ1b1 + · · ·+ λnbn) 6= ∅}

where 0 is the zero vector in L. We call BL the L-ball.

Definition 3.2. A lattice complex consists of a pair K = (A,BL) with A =
(aλ1,λ2··· ,λn

) a binary array and BL an L-ball for some n-dimensional lattice L ⊂ Rn.
The indices λi range over 1 6 λi 6 mi for some integer vector m = (m1, . . . ,mn).
We say that K has dimension n and shape m.

Cubical lattice spaces, and permutahedral lattice spaces, are both conveniently
represented on a computer as lattice complexes.

Let X ⊂ Rn
L/G be a quotient lattice space. Choose a basis b1, . . . , bn for the

finite abelian group L/G ∼= Zm1
⊕· · ·⊕Zmn

. Any v ∈ L/G is a unique combination
v = λ1b1+· · ·+λnbn with coordinates λi ∈ Zmi

. We can representX by the modular
lattice complex consisting of A = (aλ1,λ2··· ,λn

) and the L-ball BL. More precisely:

Definition 3.3. A modular lattice complex consists of a pair K = (A,BL) with
A = (aλ1,λ2··· ,λn

) a binary array and BL an L-ball for some n-dimensional lattice

L ⊂ Rn. The indices λi range over λi ∈ Z/miZ for some integer vector m =
(m1, . . . ,mn).

Note that by working in the compact manifold Rn
L/G rather than Euclidean

space Rn
L we are able to reduce the ambient dimension of the binary array when

representing certain basic spaces such as Klein bottles, tori and their products.
Lattice complexes and modular lattice complexes are particularly well suited to
efficient implementations of Algorithms 2.1 and 2.2. An obvious advantage to this
representation of a space X is that only a record of the facets of X is stored, rather
than the full cell poset.
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To present details of a practical redundancy test for low-dimensional lattice com-
plexes, we introduce some notation and terminology. Let X be a tessellated space
and let e, f be two of its facets. (Recall that we use the term facet to mean the
closure of a top-dimensional cell.) We say that e is a neighbour of f if e ∩ f 6= ∅.
In particular, f is a neighbour of itself. We define the neighbourhood of f to be the
union NX(f) of all neighbours of f . Let Y be a tessellated subspace of X (i.e some
union of facets of X). We define the neighbourhood of Y to be the union NX(Y )
of all the neighbourhoods NX(f) of facets f of Y . We note that NX(Y ) is again a
tessellated subspace of X . For a facet f in X we define the complementary neigh-
bourhood N̂X(f) to be the union of all neighbours of f except for the facet f itself.
We denote by X − f the union of all facets of X except for the facet f itself. Thus
N̂X(f) = NX(f)− f .

Definition 3.4. We shall say that a tessellated space X is locally contractible if,
for each of its facets f , the neighbourhood NX(f) is contractible.

The following lemma is immediate.

Lemma 3.1. Let enj be a maximal cell of a locally contractible tessellated space
X and let e be the facet of X arising as the closure of enj . The contact complex

Cont(enj ) is a deformation CW-retract of the complementary neighbourhood N̂X(e).

Lattice spaces X ⊂ Rn
L (and many quotient lattice spaces X ⊂ Rn

L/G) are locally
connected. So Lemma 3.1 implies that a maximal cell in X is redundant if and only
if the complementary neighbourhood of its closure is contractible. Up to transla-
tion in Rn

L (or Rn
L/G) there are only a finite number of possible complementary

neighbourhoods in X . These complementary neigbourhoods can be represented as
certain binary arrays (aλ1···λn

) with λi ∈ {−1, 0, 1}. For low values of n, it is pos-
sible to record precisely which of these binary arrays correspond to contractible
complementary neighbourhoods, and this record can be used to test redundancy.
We give details for some particular cases.

We first consider the cubical setting. A facet f in a cubical lattice space X ⊂ Rn
C

has 3n−1 possible neighbours different from f . The number of possible complemen-
tary neighbourhoods N̂X(f), up to translation in Rn, is thus 23

n
−1. For n = 2 there

are 256 possible complementary neighbourhoods N̂X(f), of which precisely 116 are
contractible. For n = 3 there are 67108864 possible complementary neighbourhoods
NX(f), of which precisely 41123720 are contractible. An optimal redundancy test
for n = 2, 3 can be implemented by recording all possible contractible complemen-
tary neigbourhoods and, given any facet f in X , checking if N̂X(f) is recorded
as contractible. For n > 4 it is practical to record only some of the contractible
complementary neighbourhoods (on say a standard PC with only a few gigabytes
of RAM). So only a non-optimal redundancy test can be implemented in this way
for n > 4.

We now consider the permutahedral setting. A facet f in a permutahedral lat-
tice space X ⊂ Rn

P has 2n+1 − 2 possible neighbours different to f . The number

of possible complementary neighbourhoods, up to translation, is thus 22
n+1

−2. For
n = 2 there are 64 possible complementary neighbourhoods N̂X(f), of which 30 are
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contractible. For n = 3 there are 16384 possible complementary neighbourhoods
N̂X(f), of which 7500 are contractible. For n = 4 there are 1073741824 possible
complementary neighbourhoods N̂X(f), of which 280694770 are contractible. When
searching for deformation retracts of subspaces of R4 there is thus a computational
advantage to working with permutahedral lattice spaces rather than cubical lat-
tice spaces since in the permutahedral case the list of contractible complementary
neighbourhoods can be stored.

From the lattice complex representation of a lattice space X ⊂ Rn
L or quotient

lattice space X ⊂ Rn
L/G one can cheaply compute the neighbourhood of any facet

and hence directly compute the number β0 of path-components in X and homology
H0(X ;A) ∼= Aβ0 . The following obvious algorithm can be used for computing β0.

Algorithm 3.1.
Input: finite tessellated space X represented so that neighbourhoods of facets can
be cheaply computed.
Output: list X1, . . . , Xc of the path components of X .
Procedure:

initialise c := 0;
deem all facets of X to be uncoloured and no facets to be coloured;
while there exists an uncoloured facet of X

set c := c+ 1;
choose some uncoloured facet and assign it the colour c;
while there exists an uncoloured facet f in the neighbourhood
of some facet of colour c

assign the colour c to f ;

for 0 6 i 6 c let Xi be the union of the facets of colour i;

4. Two toy examples

Lattice spaces arise naturally in applied topology. As a first illustration we con-
sider a toy example of the following general problem.

Given a set S of points randomly sampled from an unknown manifold
M , what can we infer about the topology of M?

For the toy example we suppose that M ⊆ R2 and consider the random sample
S of 57906 distinct points (x, y) ∈ N2 represented in Figure 5. Let C denote the
lattice spanned by (1, 0) and (0, 1). We associate to S the lattice spaceX1 consisting
of those facets DC(v) of R2

C with v ∈ S. A standard approach to understanding
M is to produce a sequence X1 ⊂ X2 ⊂ X3 ⊂ · · · of successive neighbourhoods
Xi+1 = NR

2
C

(Xi) and search for “persistent” topological properties in the sequence.
Several of the spaces Xi are illustrated in Figure 6.

The hope is that persistent properties would reflect properties of the unknown
manifold M . In this paper we are particularly interested in homology groups and
Betti numbers. The Betti numbers βi(X) are the rank of the torsion free subgroup
of the homology Hi(X ;Z) and are recorded in Table 1 for our sequence of spaces.
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Figure 5: Sample S of points from an unkown manifold M ⊂ R2

X1 X5 X10 X15

X20 X25 X35 X43

Figure 6: Various cubical neighbourhoods of the set S

The numbers in Table 1 give only a partial indication of homological persistence.
They indicate for instance that H1(X5;Z) is generated by 115 independent cycles
and H1(X10;Z) is generated by 18 cycles. But they do not indicate how many of the
115 cycles lie in the kernel of the induced homology homomorphism H1(X5;Z) →
H1(X10;Z).

In order to better capture the persistence of homology cycles one defines the
persistence Betti numbers βij

n . For i 6 j one sets βij
n equal to the rank of the torsion

free subgroup of the image of the induced homomorphism Hn(Xi;Z)→ Hn(Xj ;Z).
For i > j one sets βij

n = 0.

Following [2] we represent the matrix (βij
n ) by a graph, called a bar code, with

horizontal edges and vertices arranged in columns. The ith column has βii
n = βn(Xi)

vertices. There are βij
n paths from the ith column to the jth column.

When a bar code has many rows it is convenient to represent a collection of n
horizontal paths with common starting column and common finishing column as a
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X1 X5 X10 X15 X20 X25 X35 X43

β0 455 32 9 2 1 1 1 1
β1 0 115 18 4 1 1 1 1

Table 1: Betti numbers for various neighboorhoods of X1

single line labelled by the integer n. We say that such as bar code is in compact form.
The β1 bar code, in compact form, for our toy example is illustrated in Figure 7. The

Figure 7: β1 bar code for the spaces in Figure 6

single long horizontal path indicates that there is a single 1-dimensional homology
generator that persists from X5 to X43. The suggestion is thus that the set S was
randomly sampled from a manifold M ⊂ R2 with H1(M ;Z) = Z.

As a second illustration of the use of lattice spaces in applied topology we follow
[18] in considering digital images. The digital image of Figure 8 can be represented

Figure 8: A digital image with 3264× 2448 pixels.

as a 5-dimensional cubical lattice space whose facets are centred on the integer
vectors (x, y, r, g, b) with x, y the Euclidean coordinates of a pixel, and with r, g, b
integers in the range 0 to 255 representing the red/green/blue colour of the pixel.
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A 2-dimensional cubical lattice space Yt can be obtained by choosing a threshold
number t and including one 2-dimensional facet centred at (x, y) for each pixel with
r + g + b 6 t. (The colour white has r = 255, g = 255, b = 255.) Algorithm 3.1
can be used to compute the number β0(Yt) of path components of Yt for various
thresholds t. Figure 9 shows a plot of β0(Yt) against thresholds r + g + b 6 t = 5n
in the range 0 < t < 620, 0 < n < 124. For thresholds in the region of t = 300
the value of β0(Yt) is comparatively stable. As the threshold t increases new path

1000

10000

20000

30000

200 400 600

β0(Y )

Threshold

Figure 9: Plot of threshold t versus β0(Yt) for Yt from Figure 8.

components are born, and groups of existing path components coalesce to form
single path components. The graph of β0(Yt) thus increases and decreases. The
number βst

0 (Y ) of path components that persist from Ys to Yt can be obtained
by using Algorithm 3.1 to determine the number of path components of Yt that
intersect non-trivially with the space Ys. For large |t − s| this should be a robust
estimate of the number of objects in the image that would be detected by the human
eye. Indeed, a computation determines

β0(Y200) = 362, β0(Y400) = 629, β200,400
0 (Y ) = 20.

The value of β200,400
0 (Y ) agrees with the 20 visible objects in the digital image.

There are two homotopy types to the “visual path components” in the image of
Figure 8, one being the homotopy type of a point (coins and bolts), the other being
the homotopy type of a circle (nuts and washers). The persistence Betti numbers
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βst
1 (Y ) can be used to distinguish these two types of path component. In Section 11

we explain how Betti numbers can also be used to identify geometric features that
would distinguish washers from nuts.

We mention one drawback of a cubical approach to digital image analysis. We
might wish to compute β1(Yt) using Algorithm 3.1 and an isomorphism H1(Yt;Z)⊕
Z ∼= H0(R

2 \ Yt;Z). Since the complement R2 \ Yt is not a CW-space it is tempting
to obtain a CW-approximation using the following easily implemented definition.

Definition 4.1. LetK = (A,BL) be a lattice complex. We define the combinatorial
complement of K to be the lattice complex Kc = (Ac, BL) where A

c = (a′λ1,...,λn
) is

the binary array defined by a′λ1,...,λn
= 1 if aλ1,...,λn

= 0, a′λ1,...,λn
= 0 if aλ1,...,λn

=
1.

Lattice complexes correspond to lattice spaces and so this definition provides
a notion of combinatorial complement for lattice spaces. However, Figure 10(a)
shows a cubical lattice space which is homotopic to a circle but whose combinatorial
complement is path connected and non-simply connected. This illustrates that the
combinatorial complement of a cubical lattice space may not be homotopic to the
actual complement.

(a) (b)

Figure 10: A cubical and permutahedral circle.

Permutahedral lattice spaces have the advantage of always being manifolds since,
in the standard permutahedral tessellation of Rn, two distinct permutahedral facets
can intersect only in a face of dimension n− 1. Consequently the notion of combi-
natorial complement works well for permutahedral lattice spaces and can be used
to benefit from Alexander duality.

One aim of this paper is the computation of persistence Betti numbers and
homology homomorphisms arising from a sequence of inclusions of regular CW-
spaces. The classical algorithm due to Zomorodian and Carlsson [25] can always be
used for this computation. We describe an alternative implementation [8, 16] based
on the deformation retract approach outlined in Sections 2 and 3. This approach
is particularly well suited to tessellated subspaces of Rn

L, and to integral homology
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computations. Furthermore, the approach is easily extended to the computation of
other homotopy invariants such as (presentations of) fundamental groups.

Our first toy example above illustrates how the obvious naive approach to ho-
mology computation is likely to run into difficulties. Consider for example the space
X43 of Figure 6 which involves 296998 2-dimensional facets, 595267 1-dimensional
edges, and 298269 0-dimensional vertices. In its cellular chain complex

C2(X43)
∂2−→ C1(X43)

∂1−→ C0(X43)

the boundary homomorphism ∂2 is represented by a 595267×296998 integer matrix
and the boundary homomorphism ∂1 is represented by a 298269× 595267 integer
matrix. A direct computation of H1(X43;Z) = ker ∂1/image∂2 using the Smith
Normal Form algorithm would be time consuming.

There are of course methods for calculating H1(X43;Z) without computing ker-
nels and Smith Normal Form. (For any tessellated subspace X ⊂ R2 we have
H1(X ;Z) = Zβ1(X) where β1(X) = β0(X) + χ(X), β0(X) being the number of
path components of X and χ(X) being its Euler characteristic. Both β0(X) and
χ(X) are easily computed.) However, such methods do not easily extend to higher-
dimensional spaces.

An implementation of Algorithm 2.1 was applied to the toy space X43 involving
296990 cubical facets, with A = ∅, and resulted in the deformation retract X ′

43 of
Figure 11 involving 570 facets. The retract is 2-dimensional but its facets are so
small as to give it the appearence of a 1-dimensional space. The diagonal shape
of the retract is not significant; it is just a consequence of certain choices in our
implementation of Algorithm 2.1. Full details of the retract can be seen by enlarging
Figure 11 in the electronic version of this article. An implementation of Algorithm

Figure 11: The cubical lattice space X43 and a deformation retract X ′

43

2.2 was applied to the deformation retract X ′

43 of Figure 11, with A consisting of
a single randomly chosen facet of X ′

43, and resulted in a contractible subspace X ′′

43

involving 569 facets. The chain complex C∗(X
′

43, X
′′

43) has just one generator in
degree 2, three generators in degree 1, and one generator in degree 0. We can use
it to compute

H1(X43;Z) ∼= H1(X
′

43;Z)
∼= H1(C∗(X

′

43, X
′′

43)) = Z .
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The computation took about 1 second on a 1GHz Linux laptop with 1GB of RAM.

5. Zig-zag retracts

For a poset F we define a tessellated F -space to be a tessellated space whose facets
have face posets isomorphic to F . There are a number of computational advantages
to working in the category of tessellated F -spaces and cellular maps. However, in the
final stage of the computation of homotopy invariants of a space one usually has to
use its CW-structure, and this structure can be extremely large for a tessellated F -
spaceX . Algorithm 2.1 can be used to search for a small deformation retract Y ⊂ X
in the category of tessellated F -spaces. But often there will be other much smaller
tessellated F -spaces X ′ that are homotopy equivalent to X yet not contained in X .
(Consider a 2-dimensional annulus X with large inner radius, as in Figure 12. Any

Figure 12: Digital image of an annulus

retract will be large, and yet the annulus is homotopy equivalent to a circle of small
radius.) We describe an elementary procedure for searching for such spaces X ′.

We say that a tessellated F -space X ′ is a zig-zag retract of a tessellated F -space
X if there exists a sequence of deformation retracts

X = B0 ←֓ A1 →֒ B1 ←֓ A2 →֒ B2 ←֓ · · · →֒ Bk−1 ←֓ Ak = X ′

in the category of tessellated F -spaces. Any implementation of Algorithms 2.1 and
2.2 could be used to find zig-zag retracts that are potentially smaller than actual
retracts. To this end, let us say that a tessellated F -space W is a bounding space
for X if W contains X as a cellular subspace. In practice we choose only bounding
spaces that are contractible, but there is no theoretical necessity for this choice. (In
the case of a 2-dimensional annulus X we would choose W to be a circular disk of
radius equal to the outer radius of X .)

To produce a zig-zag retract of a tessellated space X = B0 we can first use
Algorithm 2.1 to produce a retract A1. We can then construct a small bounding
space A1 ⊂ W1. Then using Algorithm 2.2 we can compute a subspace B1 ⊂ W1

which is maximal with respect to containing A1 as a deformation retract. We can
then use Algorithm 2.1 to find a retract A2 ⊂ B1. While An+1 has fewer facets than
An this process can be repeated.

An illustration of a zig-zag retract is given in Figure 13. The above method was
applied to a 2-dimensional cubical lattice space with 58570 facets. It resulted in a
homotopy equivalent cubical lattice space with 172 facets. In the middle space the
second path component has been retracted to a cubical lattice space with just four
facets and is thus not visible in the figure at normal resolution. Details of these 2-
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dimensional spaces can be obtained by enlarging Figure 13 in the electronic version
of this article.

Figure 13: A zig-zag homotopy retract

6. Homology homomorphism of a strictly cellular map

We say that a continuous map φ : X → Y of regular CW-spaces is strictly cellular
if it maps each cell f ∈ X onto some cell e = φ(f) ∈ Y . The cell e may be of a
lower dimension than the cell f , but not of higher dimension. Such a map induces
a chain homomorphism φ∗ : C∗(X) → C∗(Y ) which is readily implemented on a
computer. In order to compute invariants of the induced homology homomorphism
Hk(φ∗) : Hk(X ;Z)→ Hk(Y ;Z) we can use Proposition 2.2(ii).

This approach was used to obtain the bar code of Figure 7. More precisely, let
X1 ⊂ X2 ⊂ X3 ⊂ · · · be a sequence of inclusions of finite tessellated spaces. In order
to determine the persistence Betti numbers βij

k is suffices to: (i) compute the induced
homology homomorphisms ιi,i+1 : Hk(Xi;Z) → Hk(Xi+1;Z); (ii) use standard lin-
ear algebra algorithms to compute the composite homomorphisms ιi,j = ιj−1,j · · ·

ιi+1,i+2ιi,i+1; (iii) and then determine βij
k as the rank of the homomorphism ιi,j .

The above approach requires tessellated spaces X ′

1 ⊂ X ′

2 ⊂ X ′

3 ⊂ · · · and X ′′

1 ⊂
X ′′

2 ⊂ X ′′

3 ⊂ · · · for which X ′′

i is a contractible subset of X ′

i and X ′

i is a deformation
retract of Xi. We then benefit from the isomorphismsHk(Xi;Z) ∼= Hk(C∗(X

′

i, X
′′

i )),
k > 1. We can construct the tessellated spaces X ′

i, X
′′

i as follows. Use Algorithm
2.1 to find a minimal deformation retract X ′

1 ⊂ X1. Then use Algorithm 2.1 to
inductively construct a minimal deformation retractX ′

i ⊂ Xi subject to X ′

i−1 ⊂ X ′

i.
Then use Algorithm 2.2 to construct a maximal contractible subspace X ′′

1 ⊂ X ′

1.
(Alternatively one could construct X ′′

1 to be a maximal acyclic subspace, though
examples suggest that this does not necessarily improve performance.) Finally use
Algorithm 2.2 to construct a maximal subspace X ′′

i ⊂ X ′

i subject to X ′′

i−1 ⊂ X ′′

i

being a deformation retract.
An implementation of this construction was applied to the sequence of cubical
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lattice spaces in Figure 6. The number of facets in the resulting spaces is given
in Table 2. The table shows that even in this toy example there can be a signifi-

i = 1 5 10 15 20 25 35 43
Xi 57906 155013 201310 226845 245255 259301 282183 296998
X ′

i 455 51110 123168 144871 156316 157721 165108 171658
X ′′

i 12 49607 122748 144547 155717 157121 164509 170805

Table 2: Number of facets in spaces Xi, X
′

i, X
′′

i

cantly greater number of facets in X ′

i than in X ′′

i , leading to large chain complexes
C∗(X

′

i, X
′′

i ) that require significant linear algebra computations. To improve the
efficiency of the computation one should search for regular CW-spaces Y ′

i , Y
′′

i that
are not tessellated but which satisfy X ′′

i ⊂ Y ′′

i ⊂ Y ′

i ⊂ X ′

i with X ′′

i a deformation
retract of Y ′′

i and Y ′

i a deformation retract of X ′

i. The discrete vector field approach
described in Section 9 can be used to find suitable Y ′

i , Y
′′

i .

7. A third example

The above persistence techniques were applied to a set S of 400 integer points
randomly chosen from a subspace of the 3-dimensional region [0, 140] × [0, 140]×
[0, 20] ⊂ R3. The set S was represented as a 3-dimensional cubical lattice space Y1

with one facet centred on each point in S. Successive neighbourhoods Y1 ⊂ Y2 ⊂
· · · ⊂ Y20 were constructed, with the space Y20 consisting of 313361 facets. The
β0 and β1 bar codes for the sequence Y4 ⊂ Y8 ⊂ Y12 ⊂ Y16 ⊂ Y20 are shown in
Figure 14; the second homology of all but the first space is trivial and so there is
no persistent homology in degree 2. The space Y20 contains a cubical lattice space

Figure 14: β0 (left) and β1 (right) bar codes for 3-dimensional cubical spaces Yi

retract with just 220 facets.
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The set S of 400 points was also used to construct an abstract graph G30 with
vertex set S, and with an edge between vertices (x1, x2, x3), (x

′

1, x
′

2, x
′

3) ∈ S if
|x1 − x′

1| + |x2 − x′

2| + |x3 − x′

3| < 30. The Vietoris-Rips complex K(G30) was
constructed for this graph. This is the simplicial complex whose simplices are the
subsets σ ⊂ S belonging to complete subgraphs of G30. There are 400 vertices,
9647 edges, 128300 2-simplices and 1183632 3-simplices in K(G30). The techniques
described in Section 2 were used to compute the homology groups H0(K(G30);Z) =
Z ⊕ Z, H1(K(G30);Z) = Z ⊕ Z and H2(K(G30);Z) = 0. These homology groups
are in keeping with the bar codes of Figure 14 and suggest that S was sampled
from a region of R3 having the homology of: (i) a disjoint union of two circles or
alternatively, (ii) a disjoint union of a point and a wedge of two circles. A picture
of the graph G30 is shown in Figure 15 and supports scenario (i). The picture was
produced using the graphviz software [13].

Figure 15: A graphviz representation of the abstract graph G30

8. Cellular approximation

Any continuous map f : X → Y of topological spaces is determined by its graph
Γ(f) = {(x, f(x)) ∈ X × Y } ⊂ X × Y . The homeomorphism X → Γ(f), x 7→
(x, f(x)) means that topological properties of f are transfered to the map Γ(f)→
Y, (x, f(x)) 7→ f(x). For computing homotopical invariants of f it suffices to consider
the map

f : Γ(f)→ Y, (x, y) 7→ y

where Γ(f) is any subspace of X × Y containing Γ(f) as a deformation retract. We
say that such a map f is a homotopy approximation to f . For computing homol-
ogy homomorphisms induced by f it suffices for Γ(f) to contain Γ(f) and for the
projection

π : Γ(f)→ X, (x, y) 7→ x

to induce homology isomorphisms

Hn(π) : Hn(Γ(f);Z)
∼=
−→ Hn(X ;Z) , n > 0. (1)
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When (1) holds we say that f is a homology approximation to f .
If X is a tessellated F -space and Y a tessellated F ′-space for posets F, F ′ then

the direct product X × Y is a tessellated F × F ′-space. Moreover, the projections
X × Y → X, (x, y) 7→ x, X × Y → Y, (x, y) 7→ y are strictly cellular. For any
tessellated subspace A ⊂ X × Y the projection restricts to a strictly cellular map
A→ Y .

A homotopy or homology approximation f : Γ(f) → Y, (x, y) 7→ y is said to be
strictly cellular when Γ(f) is a cellular subspace of X × Y .

One can attempt to compute a strictly cellular homology approximation as fol-
lows.

1. Choose a tessellated subspace A ⊂ X×Y which is known to contain the graph
Γ(f).

2. Compute the homology homomorphismsHn(π) : Hn(A;Z) −→ Hn(X ;Z), n >

0, induced by the strictly cellular projection π : A→ X .

3. If Hn(π) is an isomorphism for n > 0 then set Γ(f) = A. Otherwise restart
with a refined choice of A.

9. Regular CW-spaces and discrete vector fields

When Algorithms 2.1 and 2.2 are used to compute a ziz-zag retract of a tessellated
space X the result is a homotopy equivalent tessellated space X ′ with potentially
fewer cells. There usually exist smaller CW-retracts of X ′ that are not tessellated
subspaces. To take advantage of these smaller retracts we need to choose an ap-
propriate represention for CW-subspaces of X ′ and design an algorithm for finding
general CW-retracts of X ′.

Cellular subspaces of tessellated spaces form a broad class of computationally
accessible regular CW-spaces. The hap software package [8] uses the following two
computer representations of them.

1. The representation of a finite regular CW-space describe in Section 2 can be
used.

2. For a lattice L with basis b1, . . . , bn, and lattice space X ⊂ Rn
L, the centre

of any cell (of arbittrary dimension) in X is a point λ1b1 + . . .+ λnbn ∈ Rn.
By scaling and translating appropriately we can assume that the coefficients
λi are positive integers. We can then represent a CW-subspace of X as an
n-dimensional binary array (aλ1,...,λn

) with aλ1,...,λn
= 1 if and only if λ1b1 +

. . . + λnbn is the centre of a cell in X . This representation is particularly
convenient in the case when L is the cubical lattice C.

The language of discrete Morse theory is useful for describing an algorithm to
find CW-retracts. In particular, a discrete vector field on a regular CW-space X is
a collection of arrows α : s→ t where

(i) s, t are cells which are said to be involved in the arrow α, and any cell is
involved in at most one arrow;

(ii) dim(t) = dim(s) + 1;
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(iii) s lies in the boundary of t.

An example of a discrete vector field on a cubical lattice space is given in Figure
16. A sequence of arrows α1 : s1 → t1, α2 : s2 → t2, . . . in a vector field is deemed

≃

Figure 16: Discrete vector field on a cubical lattice space (left) and deformation
retract (right)

to be a path if

(i) the si are cells of common dimension d say, and the ti are cells of common
dimension d+ 1;

(ii) each si+1 lies in the boundary of ti.

A discrete vector field is said to be admissible if it contains no infinite path of
arrows and contains no finite cycles. The example in Figure 16 is admissible. A cell
is deemed to be critical if it is involved in no arrows of the vector field.

We remark that the notion of a discrete vector field was called a marking in the
PhD work of D. Jones [17]. A good account of the following “fundamental theorem”
of discrete Morse theory can be found in [11], though the theorem itself essentially
dates back to work of J.H.C. Whitehead on simple homotopy theory.

Theorem 9.1. If X is a regular CW-space with an admissible discrete vector field
then there is a homotopy equivalence

X ≃ Y

where Y is a CW-space whose cells are in one-to-one correspondence with the critical
cells of X.

The theorem is illustrated in Figure 16 and again in Figure 17. A difference
between these two illustrations is that the first yields a deformation CW-retract,
whereas the second yields a homotopically equivalent CW-space that is neither a
subspace nor regular. We focus attention on retracts since we have efficient rep-
resentations for these. (The cellular chain complex could be used to represent an
arbitrary CW-space. However, this chain complex does not capture the homotopy
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≃

Figure 17: Illustration of Theorem 9.1

type of the space in general.) In particular, motivated by Theorem 9.1, we use dis-
crete vector fields as a language for precisely describing deformation retracts. To
this end we say that a pair (s, t) of cells in a regular CW-space X is X-free if

(i) dim(t) = dim(s+ 1);

(ii) s lies in the boundary of t but in the boundary of no other cell of X . (In
particular, s lies in the “boundary” of X .)

The following result is obvious and yields the subsequent algorithm.

Proposition 9.2. Let X be a regular CW-space with an admissible discrete vector
field whose critical cells form a CW-retract X ′ ⊂ X. Let (s, t) be a pair of cells
in X ′ which is X ′-free. Then adding the extra arrow s → t to the vector field on
X results in a new admissible vector field whose critical cells form a CW-retract
X ′′ ⊂ X.

Algorithm 9.1.
Input: regular CW-space X .
Output: admissible discrete vector field on X whose critical cells form a retract
X ′ ⊂ X .
Procedure:

initialize X ′ := X ;
endow X with the trivial vector field involving no arrows;
while X ′ contains an X ′-free pair of cells (s, t)

let X ′′ be the retract of X ′ obtained by removing cells s and t;
add the arrow s→ t to the vector field on X ;
set X ′ := X ′′;

An implementation of Algorithm 9.1 was applied to the cubical lattice space X43

of Figure 11 and resulted in a 1-dimensional CW-retract X ′ ⊂ X43 involving 720
1-dimensional cells and 720 0-dimensional cells. For the space X43 the implemen-
tation was an order of magnitude slower than our implementation of Algorithm
2.1. However, Algorithm 9.1 resulted in a lower-dimensional CW-retract, it yielded
a corresponding discrete vector field on X43 and it did not require storage of a
pre-computed list of contractible neighbourhoods of a cell. This comparison of Al-
gorithms 2.1 and 9.1 also held when they were applied to various 3-dimensional
cubical lattice spaces.

Algorithms 2.1 and 9.1 can be used together to good effect. Consider for instance
the 3-dimensional permutahedral complex X obtained from a 100× 100× 100 solid
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array of permutahedra by removing a single central permutahedron. Then X has
the homotopy type of a sphere S2 and contains 999999 3-dimensional facets. Our
implementation of Algorithm 2.1 took 5 seconds (on a 1GHz Linux laptop with
1GB of RAM) to produce a deformation retract X ′ ⊂ X containing 14 facets, 160
2-dimensional cells, 336 edges and 192 vertices. Our implementation of Algorithm
9.1 then took 10 milliseconds to produce a CW-retract X ′′ ⊂ X ′ containing 14 2-
cells, 36 edges and 24 vertices. The integral homology of the chain complex C∗(X

′′)
is calculated in a few milliseconds.

The performance of Algorithms 2.1 and 9.1 is likely to depend heavily on the
sophistication with which one iterates over cells f ∈ X in loops of the form

while space X has a cell f with a given property, do ... .

Our implementations iterate in a fairly naive manner and could certainly be im-
proved.

If one just wants to calculate homology, or a presentation for the fundamental
group, of a regular CW-space X then it is desirable to compute an admissible
discrete vector field on X which is as large as possible. This vector field can be used
to construct a chain complex C∗(Y ) with one free generator for each critical cell in
X and with homology isomorphic to the homology of X . There is no advantage in
requiring that the critical cells form a retract. The following algorithm is used in
the software package hap for obtaining such a vector field.

Algorithm 9.2.
Input: regular CW-space X .
Output: admissible discrete vector field on X .
Procedure:

deem all cells in X to be unlabelled;
initialize Y := X ;
while X contains unlabelled cells do

apply Algorithm 9.1 to obtain a discrete vector field on Y whose
critical cells form a deformation retract Y ′ ⊂ Y ;
transfer the vector field from Y to X and deem all cells of X
involved in an arrow to be labelled;
if Y ′ is non-empty then remove some top dimensional cell from
Y ′ and deem the corresponding cell in X to be labelled;
set Y := Y ′;

10. Homology homomorphism of a zig-zag retraction

Consider the situation where we have formulae describing a strictly cellular
map τ : X → Y of large finite regular CW-spaces. Suppose that we have con-
structed zig-zag retracts X ′, Y ′ and wish to compute the homology homomorphism
Hn(τ) : Hn(X

′)→ Hn(Y
′) induced by

X ′ ≃

−→ X
f
−→ Y

≃

−→ Y ′.
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The computation can be achieved using formulae that describe the chain homotopies
C∗(X

′) → C∗(X) and C∗(Y ) → C∗(Y
′). Formulae for these chain homotopies can

be obtained as follows.

Suppose that X is endowed with an admissible discrete vector field whose crit-
ical cells form a deformation retract X ′ ⊂ X . The vector field determines a re-
traction ρ : X → X ′ which we shall describe at the level of the induced chain map
ρ∗ : C∗(X)→ C∗(X

′). We regard C∗(X
′) as a sub-chain complex of C∗(X) and we

denote the boundary homomorphisms of C∗(X) by ∂n. Given an arrow s → t in
the vector field we say that the cell s is a source and that the cell t is a target;
we let 〈s, t〉 denote the sign with which the chain group generator s appears in the
boundary chain ∂(t). The following result is a routine exercise.

Proposition 10.1. Let X be a regular CW-space with admissible discrete vector
field whose critical cells form a deformation retract X ′ ⊂ X. There exists a chain
homomorphism ρ : C∗(X) → C∗(X

′) defined recursively on generators f ∈ Cn(X)
by

ρn(f) =







f if f is a critical cell
0 if f is a target cell
ρn(f − 〈f, t〉∂n+1(t)) if f is a source cell with corresponding target t.

The recursion terminates due to the admissibility of the vector field. The chain
homomorphism induces isomorphisms on homology.

Any zig-zag retract of tessellated spaces

X = B0 ←֓ A1 →֒ B1 ←֓ A2 →֒ B2 ←֓ · · · →֒ Bk−1 ←֓ Ak = X ′

induces a sequence of chain homomorphisms

C∗(X)
ρ1
→ C∗(A1)

ι1→ C∗(B1)
ρ2
→ C∗(A2)→ · · · → C∗(X

′)

where the ρi are induced by retractions and the ιi are induced by inclusions. If each
retract Ai ⊂ Bi−1 and Ai ⊂ Bi is constructed from a discrete vector field then
each of these chain maps can be computed and used to determine the homology
homomorphisms Hk(X ;Z)→ Hk(X

′;Z).

Proposition 10.1 is easily extended to provide the chain maps C∗(X)→ C∗(Y ),
C∗(Y ) → C∗(X) arising from an admissible discrete vector field on X with Y the
homotopy equivalent space asserted by Theoprem 9.1. This provides an alternative
approach to computing the persistence Betti numbers βij

k of a sequence of regular
CW-spaces X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ Xn. We could construct an admissible discrete
vector field on each Xi. (For instance, one could construct a discrete vector field
on Xn and induce from it vector fields on each Xi.) The vector fields induce chain
homotopies C∗(Xi) → C∗(Yi), C∗(Yi) → C∗(Xi) from which we could compute
the chain homomorphism ιi,i+1 : C∗(Yi) → C∗(Xi) → C∗(Xi+1) → C∗(Yi+1). In
this computation of ιi,i+1 much of the information in the chain complexes C∗(Xi)
and C∗(Xi+1) is not required; memory and running time would thus be saved by
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implementing these two chain complexes using a lazy evaluation programming style.
The persistence Betti number βij

k is the rank of the image of the induced composite
homology homomorphism ιi,j : Hk(Yi;Z) → Hk(Yi+1;Z) → · · · → Hk(Yj ;Z). We
have not yet implemented this approach to persistence Betti numbers.

11. Geometry of data

Homological computations can be used to identify geometric features of data.
Consider for instance the two 2-dimensional polygonal disks in Figure 18 (left).
The first is a quadrilateral and the second has nine sides. Since both are homotopy

Figure 18: Two polygonal disks, their singularities, and thickened singularities.

equivalent to a point we can not distinguish them directly from their homological
properties.

Let X be a tessellated space with finite tessellated subspace Y ⊂ X . (We are par-
ticularly interested in the case where X is the infinite tessellation X = Rn

L.) By the
combinatorial complement of Y we mean the tessellated subspace X − Y consisting
of the union of those facets of X that are not facets of Y . By the combinatorial
boundary of Y we mean the tessellated subspace ∂Y consisting of the union of those
facets f in Y whose neighbourhood NX(f) contains at least one facet e in X − Y .
The combinatorial interior of Y is then the tessellated subspace Y − ∂Y . We write
size(Y ) to denote the number of facets in Y .

Given a facet f in X and integer r > 1 we define the combinatorial ball of
radius r centred at f to be the tessellated subspace BX(r, f) = NX(BX(r − 1, f))
where BX(1, f) = NX(f). We define the sphere of radius r centred at f to be the
tessellated subspace SX(r, f) = ∂BX(r, f).

The following notion of singular facet can be used to identify geometric features.

Definition 11.1. For an integer r > 1 and number 0 < τ < 1 we say that a facet
f of Y is (r, τ)-smooth if either f lies in the combinatorial interior of Y or else
the combinatorial complement SX(r, f)− ∂Y consists of precisely two contractible
path-components C1, C2 satisfying

|size(C1)− size(C2)|

size(C1) + size(C2)
< τ.

We say that f ∈ Y is (r, τ)-singular if it is not (r, τ)-smooth.

The two polygonal disks of Figure 18 were represented as 2-dimensional cubical
lattice spaces with 45848 and 116825 facets respectively. For each polygonal disk
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the cubical lattice subspace consisting of the (10, 0.15)-singular facets is shown in
Figure 18 (middle). For the quadrilateral the space of singular facets has 4 path-
components, and for the nine-sided polygon it has 11 path-components. Both spaces
of singular facets were repeatedly thickened by taking neighbourhoods. One thicken-
ing is shown in Figure 18 (right). The β0 persistence bar codes were constructed for
the sequence of thickenings and show that there are respectively 4 and 9 persistent
path components for the two polygons. This illustrates how homological methods
can be used to distinguish between geometrically different tessellated spaces.

When using this method to identify geometric features of an object it seems
likely that the permutahedral setting Rn

P should give better results than the cubical
setting Rn

C since a permutahedral sphere of radius r is better than a cubical sphere as
an approximation to an actual Euclidean sphere. However, we have not investigated
this empirically.

12. Implementation

Implementations of the above algorithms are available in the first author’s ho-
mological algebra package hap [8] for the gap compuational algebra system and in
the second author’s extension [16] to the package. The following three gap sessions
are intended to illustrate the modularity of the implementation, its user interface,
and a few of its data types.

The first session reads the digital image of Figure 12 into hap as a 2-dimensional
cubical lattice complex S and then constructs the direct product T = S × S as a
4-dimensional cubical lattice complex. The complex T has the homotopy type of
a torus and involves a total of 2452356 cells. Then T is converted into a regular
CW-space Y with the same number of cells. A discrete vector field with just four
critical cells is then constructed. A chain complex C of free abelian groups is then
constructed. The chain complex involves one free generator for each critical cell
and is chain homotopy equivalent to the cellular chain complex of Y . Finally the
second homology H2(C) = Z is computed. The homology computation uses gap’s
implementation of a Smith Normal Form algorithm.
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gap> S:=ReadImageAsPureCubicalComplex("annulus.eps",300);

Pure cubical complex of dimension 2.

gap> T:=DirectProductOfPureCubicalComplexes(S,S);

Pure cubical complex of dimension 4.

gap> Y:=CubicalComplexToRegularCWComplex(T);

Regular CW-space of dimension 4

gap> Size(Y);

2452356

gap> CriticalCellsOfRegularCWComplex(Y);

[ [ 2, 66910 ], [ 1, 52430 ], [ 1, 628618 ], [ 0, 173201 ] ]

gap> C:=ChainComplex(Y);

Chain complex of length 4 in characteristic 0 .

gap> Homology(C,2);

[ 0 ]

The second gap session reads the hand-drawn image of Figure 19 into hap as
a 3-dimensional cubical lattice complex L. Each pixel is represented by a 3-cube.
The image represents the linked Borromean rings and the first command of the
session tries to identify the under crossings and build them into the 3-dimensional
complex. The second command constructs the combinatorial complement K of L
and the hope is that K has the homotopy type of the Euclidean complement of
the Borromean rings. The combinatorial complement K is a cubical lattice complex

Figure 19: Hand-drawn image of Borromean rings

involving 1440266 3-dimensional cubes. A zig-zag homotopy retract of K is then
constructed. This zig-zag rectract, M , is a 3-dimensional cubical lattice complex
involving 116123 cells of dimension 3. The complex M is then converted to a regular
CW-complex Y . Finally the fundamental group of Y is computed using the critical
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cells of a discrete vector field. The fundamental group is stored as a finitely presented
group.

gap> L:=ReadLinkImageAsPureCubicalComplex("borromean.jpg");

Pure cubical complex of dimension 3.

gap> K:=ComplementOfPureCubicalComplex(L);

Pure cubical complex of dimension 3.

gap> Size(K);

1440266

gap> M:=ZigZagContractedPureCubicalComplex(C);

Pure cubical complex of dimension 3.

gap> Size(M);

116123

gap> Y:=CubicalComplexToRegularCWSpace(M);

Regular CW-space of dimension 3

gap> CriticalCellsOfRegularCWComplex(Y);

[ [ 2, 334 ], [ 2, 115000 ], [ 2, 139630 ],

[ 1, 386713 ], [ 1, 404957 ], [ 1, 405056 ],

[ 1, 600331 ], [ 0, 164802 ], [ 0, 241782 ] ]

gap> G:=FundamentalGroup(Y);

#I there are 3 generators and 2 relators of total length 20

<fp group of size infinity on the generators [ f1, f2, f3 ]>

gap> RelatorsOfFpGroup(G);

[ f3^-1*f2^-1*f3*f1^-1*f2*f3*f2^-1*f3^-1*f1*f2,

f2^-1*f3^-1*f1*f3*f1^-1*f2*f1*f3^-1*f1^-1*f3 ]

The third gap session below uses standard gap and hap commands to investigate
the fundamental group G.

We first remark that permutahedral lattice complexes are a more efficient tool for
accessing homotopical information of link complements. The reason has been men-
tioned above: permutahedral lattice spaces are manifolds and their combinatorial
complement always has the homotopy type of their actual complement.

The third gap session constructs the quotient G3 = G/γ3(G) of the above funda-
mental group G by the 3rd term of its lower central series. The group G3 is stored as
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a power commutator presented group. A free ZG3-resolution is then constructed as
the cellular chain complex R∗ = C∗(X̃) of the universal cover of a classifying regular
CW-space X . This universal cover contains infinitely many cells but can be stored
on a computer using the G3-action (see [9] for details). Finally the group homology
H3(G/γ3(G);Z) ∼= Z40 is computed from the chain complex T∗ = C∗(X) ⊗ZG3

Z

using gap’s implementation of a Smith Normal Form algorithm.

gap> G3:=NilpotentQuotient(G,3);

Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

gap> R:=ResolutionNilpotentGroup(G3,4);

Resolution of length 4 in characteristic 0 for Pcp-group with orders

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ] .

gap> T:=TensorWithIntegers(R);

Chain complex of length 4 in characteristic 0 .

gap> Homology(T,3);

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

We remark that H3(G/γ3(G);Z) is a link invariant which can be used, for in-
stance, to distinguish the Borromean rings L from a link L′ obtained by changing
one crossing in L.

We should also remark that this homological invariant of G would fail to distin-
guish the trefoil knot L from the trivial knot since G/γn(G) is infinite cyclic for
n > 2 when G is the fundamental group of the trefoil knot complement. However,
an advantage of implementing software as a package for the gap system is that one
has easy access to a vast range of efficiently implemented algebraic algorithms. So
had we taken L to be the trefoil knot then our knot group would have presentation
G = 〈x, y : x2 = y3〉. In order to distinguish this group G from the infinite cyclic
group G0 = 〈x : ∅〉 of the trivial knot we could use gap’s procedures for studying
finitely presented groups. In particular, we could list the abelian invariants of all
subgroups H < G and of all subgroups H < G0 of index at most 3. The following
gap session shows that G ≇ G0 in this case.

gap> F:=FreeGroup(2);;x:=F.1;;y:=F.2;;

gap> G:=F/[x^2*y^-3];;

gap> G0:=F/[x*y^-1];;

gap> List(LowIndexSubgroupsFpGroup(G,3),AbelianInvariants);

[ [ 0 ], [ 0, 2, 2 ], [ 0, 0 ], [ 0, 3 ] ]

gap> List(LowIndexSubgroupsFpGroup(G0,3),AbelianInvariants);

[ [ 0 ], [ 0 ], [ 0 ] ]
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Lotharingien de Combinatoire, volume 48, 2001.

[12] The gap Group, gap – Groups, Algorithms, and Programming, Version 4.4.9;
2006. (http://www.gap-system.org)

[13] graphviz - Graph Visualization Software. http://www.graphviz.org/

[14] S. Harker, K. Mischaikow, M. Mrozek, V. Nanda, H. Wagner, M. Juda, P.
Dlotko, “The Efficiency of a Homology Algorithm based on Discrete Morse
Theory and Coreductions”, published in: Proceedings of the 3rd International
Workshop on Computational Topology in Image Context, Chipiona, Spain,
November 2010 (Rocio Gonzalez Diaz Pedro Real Jurado (Eds.)), Image A
Vol. 1(2010), 41-47.

[15] S. Harker, K. Mischaikow, M. Mrozek, V. Nanda, “Discrete Morse Theoretic
Algorithms for Computing Homology of Complexes and Maps”, Foundations
of Computational Mathematics, accepted.

[16] F. Hegarty, happermutahedral – Version 1.0 (2011), a package for the gap
computational algebra system. (http://hamilton.nuigalway.ie)

[17] D. Jones, “A general theory of polyhedral sets”, Dissertationes Math. (1988).

[18] T. Kaczyski, K.M. Mischaikow & Marian Mrozek k Computational Homology,
Springer (2004), pp. 480.



Journal of Homotopy and Related Structures, vol. ??(??), ???? 33

[19] W.S. Massey, A basic course in algebraic topology, Graduate Texts in Math-
ematics 127, Springer-Verlag 1991.

[20] M. Mrozek et al., Computer Assisted Proofs in Dynamics.
http://capd.ii.uj.edu.pl/.

[21] M. Mrozek et al., Reduction Homology Algorithms.
http://redhom.ii.uj.edu.pl/.

[22] plex, software package for persistent homology of simplicial complexes,
http://comptop.stanford.edu/u/programs/jplex/

[23] F. Sergereart et al., KENZO system for computational algebraic topology,
http://www-fourier-ujf-grenoble.fr/ sergerar/Kenzo

[24] Tadeusz E. Dorozinski, Image of permutahedral tessellation
http://en.wikipedia.org/wiki/File:HC-A4.png

[25] A. Zomorodian & G. Carlsson, “Computing persistent homology”, Discrete.
Comput. Geom. 33 (2005), 249–274.

Graham Ellis graham.ellis@nuigalway.ie

School of Mathematics, National University of Ireland Galway, Ireland

Fintan Hegarty fintan.hegarty@gmail.com

School of Mathematics, National University of Ireland Galway, Ireland


