Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

31 Knots and Links
 31.1  

31 Knots and Links

31.1  

31.1-1 PureCubicalKnot
‣ PureCubicalKnot( L )( function )
‣ PureCubicalKnot( n, i )( function )

Inputs a list L=[[m1,n1], [m2,n2], ..., [mk,nk]] of pairs of integers describing a cubical arc presentation of a link with all vertical lines at the front and all horizontal lines at the back. The bottom horizontal line extends from the m1-th column to the n1-th column. The second to bottom horizontal line extends from the m2-th column to the n2-th column. And so on. The link is returned as a 3-dimensional pure cubical complex.

Alternatively the function inputs two integers n, i and returns the i-th prime knot on n crossings.

Examples: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 

31.1-2 ViewPureCubicalKnot
‣ ViewPureCubicalKnot( L )( function )

Inputs a pure cubical link L and displays it.

Examples: 1 , 2 

31.1-3 KnotSum
‣ KnotSum( K, L )( function )

Inputs two pure cubical knots K, L and returns their sum as a pure cubical knot. This function is not defined for links with more than one component.

Examples: 1 , 2 , 3 , 4 , 5 

31.1-4 KnotGroup
‣ KnotGroup( K )( function )

Inputs a pure cubical link K and returns the fundamental group of its complement. The group is returned as a finitely presented group.

Examples: 1 

31.1-5 AlexanderMatrix
‣ AlexanderMatrix( G )( function )

Inputs a finitely presented group G whose abelianization is infinite cyclic. It returns the Alexander matrix of the presentation.

Examples:

31.1-6 AlexanderPolynomial
‣ AlexanderPolynomial( K )( function )
‣ AlexanderPolynomial( G )( function )

Inputs either a pure cubical knot K or a finitely presented group G whose abelianization is infinite cyclic. The Alexander Polynomial is returned.

Examples: 1 , 2 

31.1-7 ProjectionOfPureCubicalComplex
‣ ProjectionOfPureCubicalComplex( K )( function )

Inputs an $n$-dimensional pure cubical complex K and returns an n-1-dimensional pure cubical complex K'. The returned complex is obtained by projecting Euclidean n-space onto Euclidean n-1-space.

Examples:

31.1-8 ReadPDBfileAsPureCubicalComplex
‣ ReadPDBfileAsPureCubicalComplex( file )( function )
‣ ReadPDBfileAsPureCubicalComplex( file, m, c )( function )

Inputs a protein database file describing a protein, and optionally inputs a positive integer m and character string c. The default values for the optional inputs are m=5 and c="A". It loads the chain of amino acids labelled by c in the file as a 3-dimensional pure cubical complex of the homotopy type of a circle.

It might happen that the function fails to construct a pure cubical complex of the homotopy type of a circle. In this case retry with a larger integer m.

Examples: 1 , 2 

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ind

generated by GAPDoc2HTML