Basic Perturbation Lemma and effective homology: application to the computation of homology of 2-types

Ana Romero

Universidad de La Rioja (Spain)

(Joint work with J. Rubio and F. Sergeraert)

Homological Perturbation Theory Workshop
Galway, December 2014
Introduction

The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Homology of digital images by means of Discrete Vector Fields.
- Spectral sequences associated with filtered complexes (including Serre and Eilenberg-Moore spectral sequences).
- Persistent homology.
- Koszul homology.
- Bousfield-Kan spectral sequence for computing homotopy groups of spaces.
- Homology of groups.
- Homology of 2-types.
Introduction

- The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).
The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Homology of digital images by means of Discrete Vector Fields.
- Spectral sequences associated with filtered complexes (including Serre and Eilenberg-Moore spectral sequences).
- Persistent homology.
- Koszul homology.
- Bousfield-Kan spectral sequence for computing homotopy groups of spaces.
- Homology of groups.
- Homology of 2-types.
The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Homology of digital images by means of Discrete Vector Fields.
- Spectral sequences associated with filtered complexes (including Serre and Eilenberg-Moore spectral sequences).
- Persistent homology.
- Koszul homology.
- Bousfield-Kan spectral sequence for computing homotopy groups of spaces.
- Homology of groups.
- Homology of 2-types.
The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Homology of digital images by means of Discrete Vector Fields.

Spectral sequences associated with filtered complexes (including Serre and Eilenberg-Moore spectral sequences).

Persistent homology.

Koszul homology.

Bousfield-Kan spectral sequence for computing homotopy groups of spaces.

Homology of groups.

Homology of 2-types.
The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Homology of digital images by means of Discrete Vector Fields.
- Spectral sequences associated with filtered complexes (including Serre and Eilenberg-Moore spectral sequences).
The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Homology of digital images by means of Discrete Vector Fields.
- Spectral sequences associated with filtered complexes (including Serre and Eilenberg-Moore spectral sequences).
- Persistent homology.
The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Homology of digital images by means of Discrete Vector Fields.
- Spectral sequences associated with filtered complexes (including Serre and Eilenberg-Moore spectral sequences).
- Persistent homology.
- Koszul homology.
Introduction

The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Homology of digital images by means of Discrete Vector Fields.
- Spectral sequences associated with filtered complexes (including Serre and Eilenberg-Moore spectral sequences).
- Persistent homology.
- Koszul homology.
- Bousfield-Kan spectral sequence for computing homotopy groups of spaces.
Introduction

The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Homology of digital images by means of Discrete Vector Fields.
- Spectral sequences associated with filtered complexes (including Serre and Eilenberg-Moore spectral sequences).
- Persistent homology.
- Koszul homology.
- Bousfield-Kan spectral sequence for computing homotopy groups of spaces.
- Homology of groups.
The Basic Perturbation Lemma was discovered by Shih Weishu in 1960, and the abstract modern form was given by Ronnie Brown in 1964 (after some unpublished results by M. Barrat).

We have used it combined with the effective homology method, in order to determine:

- Homology of cones, bicomplexes, twisted Cartesian products, loop spaces, classifying spaces...
- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Homology of digital images by means of Discrete Vector Fields.
- Spectral sequences associated with filtered complexes (including Serre and Eilenberg-Moore spectral sequences).
- Persistent homology.
- Koszul homology.
- Bousfield-Kan spectral sequence for computing homotopy groups of spaces.
- Homology of groups.
- Homology of 2-types.
Effective homology

Definition

A reduction ρ between two chain complexes C^\ast and D^\ast (denoted by $\rho: C^\ast \Rightarrow D^\ast$) is a triple $\rho = (f, g, h)$ satisfying the following relations:

1) $fg = \text{Id}_{D^\ast}$;
2) $d_{C^\ast}h + hd_{C^\ast} = \text{Id}_{C^\ast} - gf$;
3) $fh = 0$; $hg = 0$; $hh = 0$.

If $C^\ast \Rightarrow D^\ast$, then $C^\ast \cong D^\ast \oplus A^\ast$, with A^\ast acyclic, which implies that $H_n(C^\ast) \cong H_n(D^\ast)$ for all n.
A reduction ρ between two chain complexes C_* and D_* (denoted by $\rho : C_* \Rightarrow D_*$) is a triple $\rho = (f, g, h)$ satisfying the following relations:

1) $fg = \text{Id}_{D_*}$;
2) $d_C h + h d_C = \text{Id}_{C_*} - gf$;
3) $fh = 0$; $hg = 0$; $hh = 0$.

If $C_* \Rightarrow D_*$ then $C_* \cong D_* \oplus A_*$ with A_* acyclic, which implies that $H_n(C_*) \cong H_n(D_*)$ for all n.

Effective homology

Definition

A *reduction* ρ between two chain complexes C_* and D_* (denoted by $\rho : C_* \Rightarrow D_*$) is a triple $\rho = (f, g, h)$ satisfying the following relations:
Effective homology

Definition

A reduction ρ between two chain complexes C_* and D_* (denoted by $\rho : C_* \Rightarrow D_*$) is a triple $\rho = (f, g, h)$ satisfying the following relations:

1) $fg = \text{Id}_{D_*}$;
2) $d_C h + hd_C = \text{Id}_{C_*} - gf$;
3) $fh = 0; \quad hg = 0; \quad hh = 0$.

If $C_* \Rightarrow D_*$, then $C_* \cong D_* \oplus A_*$, with A_* acyclic, which implies that $H_n(C_*) \cong H_n(D_*)$ for all n.
Effective homology

Definition

A (strong chain) equivalence \(\varepsilon \) between \(C^* \) and \(D^* \), \(\varepsilon : C^* \leftrightarrow D^* \), is a triple \(\varepsilon = (B^*, \rho, \rho') \) where \(B^* \) is a chain complex, \(\rho : B^* \rightarrow C^* \) and \(\rho' : B^* \rightarrow D^* \).

Definition

An object with effective homology is a quadruple \((X, C^*(X), EC^*, \varepsilon) \) where \(EC^* \) is an effective chain complex and \(\varepsilon : C^*(X) \leftrightarrow EC^* \). This implies that \(H_n(X) \cong H_n(EC^*) \) for all \(n \).
Effective homology

Definition

A *(strong chain) equivalence* \(\varepsilon \) between \(C_* \) and \(D_* \), \(\varepsilon : C_* \iff D_* \), is a triple \(\varepsilon = (B_*, \rho, \rho') \) where \(B_* \) is a chain complex, \(\rho : B_* \Rightarrow C_* \) and \(\rho' : B_* \Rightarrow D_* \).

\[\begin{array}{ccc}
C_* & \xrightarrow{\rho} & B_* \\
& \searrow & \nearrow \\
& 14 & 42 \\
& 10 & 30 \\
& \nearrow & \searrow \\
D_* & \xrightarrow{\rho'} & B_* \\
& \swarrow & \nwarrow \\
& 21 & 15 \\
& \nwarrow & \swarrow \\
\end{array} \]
Effective homology

Definition

A **(strong chain) equivalence** ε between C_\ast and D_\ast, $\varepsilon : C_\ast \leftrightarrow D_\ast$, is a triple $\varepsilon = (B_\ast, \rho, \rho')$ where B_\ast is a chain complex, $\rho : B_\ast \Rightarrow C_\ast$ and $\rho' : B_\ast \Rightarrow D_\ast$.

\[
\begin{array}{ccc}
C_\ast & \xrightarrow{B_\ast} & D_\ast \\
\downarrow & & \downarrow \\
14 & \xrightarrow{10} & 21 \\
30 & \xrightarrow{42} & 15
\end{array}
\]

Definition

An **object with effective homology** is a quadruple $(X, C_\ast(X), EC_\ast, \varepsilon)$ where EC_\ast is an effective chain complex and $\varepsilon : C_\ast(X) \leftrightarrow EC_\ast$. This implies that $H_n(X) \cong H_n(EC_\ast) \quad \forall \ n$.

Ana Romero

Basic Perturbation Lemma, effective homology and homology of 2-types

HPT Workshop 4 / 29
Effective homology

Definition

A *strong chain* equivalence ε between C_* and D_*, $\varepsilon : C_* \iff D_*$, is a triple $\varepsilon = (B_*, \rho, \rho')$ where B_* is a chain complex, $\rho : B_* \Rightarrow C_*$ and $\rho' : B_* \Rightarrow D_*$.

Definition

An object with effective homology is a quadruple $(X, C_*(X), EC_*, \varepsilon)$ where EC_* is an effective chain complex and $\varepsilon : C_*(X) \iff EC_*$.

This implies that $H_n(X) \cong H_n(EC_*)$ for all n.

Ana Romero

Basic Perturbation Lemma, effective homology and homology of 2-types

HPT Workshop
Effective homology

Meta-theorem

Let X_1, \ldots, X_k be a collection of objects with effective homology and Φ be a reasonable construction process:

$$\Phi : (X_1, \ldots, X_k) \rightarrow X.$$

Then there exists a version with effective homology $\Phi_{EH}: ((X_1, C(X_1), EC_1, \varepsilon_1), \ldots, (X_k, C(X_k), EC_k, \varepsilon_k)) \rightarrow (X, C(X), EC, \varepsilon).$

The process is perfectly stable and can be again used with X for further calculations.

Examples:

twisted Cartesian products, loop spaces, suspensions, simplicial Abelian groups generated by simplicial sets,
Meta-theorem

Let X_1, \ldots, X_k be a collection of objects with effective homology and Φ be a reasonable construction process:

$$\Phi : (X_1, \ldots, X_k) \rightarrow X.$$
Let X_1, \ldots, X_k be a collection of objects with effective homology and Φ be a reasonable construction process:

$$\Phi : (X_1, \ldots, X_k) \rightarrow X.$$

Then there exists a version with effective homology Φ^{EH}

$$\Phi^{EH} : ((X_1, C(X_1), EC_1, \varepsilon_1), \ldots, (X_k, C(X_k), EC_k, \varepsilon_k)) \rightarrow (X, C(X), EC, \varepsilon)$$
Meta-theorem

Let X_1, \ldots, X_k be a collection of objects with effective homology and Φ be a reasonable construction process:

$$\Phi : (X_1, \ldots, X_k) \rightarrow X.$$

Then there exists a version with effective homology Φ^{EH}

$$\Phi^{EH} : ((X_1, C(X_1), EC_1, \varepsilon_1), \ldots, (X_k, C(X_k), EC_k, \varepsilon_k)) \rightarrow (X, C(X), EC, \varepsilon)$$

The process is perfectly stable and can be again used with X for further calculations.
Meta-theorem

Let X_1, \ldots, X_k be a collection of objects with effective homology and Φ be a reasonable construction process:

$$\Phi : (X_1, \ldots, X_k) \to X.$$

Then there exists a version with effective homology Φ^{EH}

$$\Phi^{EH} : ((X_1, C(X_1), EC_1, \varepsilon_1), \ldots, (X_k, C(X_k), EC_k, \varepsilon_k)) \to (X, C(X), EC, \varepsilon)$$

The process is perfectly stable and can be again used with X for further calculations.

Examples: twisted Cartesian products, loop spaces, suspensions, simplicial Abelian groups generated by simplicial sets,
The Kenzo system

The Kenzo system uses the notion of object with effective homology to compute homology groups of some complicated spaces. If the complex is effective, then its homology groups can be determined by means of diagonalization algorithms on matrices. Otherwise, the program uses the effective homology.

Example:

\[X = \Omega(\Omega(\Omega(P_\infty \mathbb{R}/P_3 \mathbb{R}) \cup D_4) \cup D_2) \]

\[H_5(X) = \mathbb{Z}_2^2 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{16} \]

\[H_6(X) = \mathbb{Z}_5^2 \oplus \mathbb{Z}_3^4 \oplus \mathbb{Z}_3 \]

\[H_7(X) = \mathbb{Z}_{113}^2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{3}^8 \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{32} \oplus \mathbb{Z}_{32} \]
The Kenzo system

The Kenzo system uses the notion of *object with effective homology* to compute homology groups of some complicated spaces.

Example:

\[X = \Omega(\Omega(\Omega(P_{\infty}R_{\infty}R) \cup D_4) \cup D_2) \]

\[H_5(X) = \mathbb{Z}_2^2 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{16} \]

\[H_6(X) = \mathbb{Z}_{52}^2 \oplus \mathbb{Z}_3^4 \oplus \mathbb{Z}_3 \]

\[H_7(X) = \mathbb{Z}_{113}^2 \oplus \mathbb{Z}_4^8 \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{32} \oplus \mathbb{Z}_{32} \]
The Kenzo system

The Kenzo system uses the notion of *object with effective homology* to compute homology groups of some complicated spaces.

- If the complex is effective, then its homology groups can be determined by means of diagonalization algorithms on matrices.

Example:

\[
X = \Omega(\Omega(\Omega(P_{\infty}R/P_3R) \cup D_4) \cup D_2)
\]

\[
H_5(X) = \mathbb{Z}_2^2 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{16}
\]

\[
H_6(X) = \mathbb{Z}_2^{52} \oplus \mathbb{Z}_3^{4} \oplus \mathbb{Z}_3
\]

\[
H_7(X) = \mathbb{Z}_{113}^{2} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{3}^{8} \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{32} \oplus \mathbb{Z}_2
\]
The Kenzo system

The Kenzo system uses the notion of *object with effective homology* to compute homology groups of some complicated spaces.

- If the complex is effective, then its homology groups can be determined by means of diagonalization algorithms on matrices.
- Otherwise, the program uses the effective homology.

Example:

\[
X = \Omega(\Omega(\Omega(\mathbb{P}_\infty \mathbb{R} / \mathbb{P}_3 \mathbb{R})) \cup 4 \mathbb{D}^4) \cup 2 \mathbb{D}^2)
\]

\[
H_5(X) = \mathbb{Z}_2^3 \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{16}
\]

\[
H_6(X) = \mathbb{Z}_5^2 \oplus \mathbb{Z}_3^4 \oplus \mathbb{Z}_3
\]

\[
H_7(X) = \mathbb{Z}_{113}^2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3^8 \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{32} \oplus \mathbb{Z}_{32}
\]
The Kenzo system uses the notion of *object with effective homology* to compute homology groups of some complicated spaces.

- If the complex is effective, then its homology groups can be determined by means of diagonalization algorithms on matrices.
- Otherwise, the program uses the effective homology.

Example:

\[
X = \Omega(\Omega(\Omega(\Omega(P^\infty\mathbb{R}/P^3\mathbb{R}) \cup_4 D^4) \cup_2 D^2) \cup_4 D^4) \cup_2 D^2)
\]

\[
H_5(X) = \mathbb{Z}_2^{23} \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_{16}
\]

\[
H_6(X) = \mathbb{Z}_2^{52} \oplus \mathbb{Z}_4^3 \oplus \mathbb{Z}^3
\]

\[
H_7(X) = \mathbb{Z}_2^{113} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_8^3 \oplus \mathbb{Z}_{16} \oplus \mathbb{Z}_{32} \oplus \mathbb{Z}
\]
Perturbation theorems

Definition

Let (C^*, d) be a chain complex. A perturbation $\delta: C^* \to C^{*-1}$ is an operator of degree -1 satisfying $(d + \delta) \circ (d + \delta) = 0$. This produces a new perturbed chain complex $(C^*, d + \delta)$.

Let $\rho = (f, g, h)$ be a reduction $(C^*, d_C) \downarrow \downarrow f \to (D^*, d_D) \leftarrow g \leftarrow \leftarrow h$. What happens if we perturb d_C or d_D?
Definition

Let \((C_\ast, d)\) be a chain complex. A perturbation \(\delta : C_\ast \rightarrow C_{\ast - 1}\) is an operator of degree \(-1\) satisfying \((d + \delta) \circ (d + \delta) = 0\).
Definition

Let \((C_*, d)\) be a chain complex. A *perturbation* \(\delta : C_* \rightarrow C_{*-1}\) is an operator of degree \(-1\) satisfying \((d + \delta) \circ (d + \delta) = 0\).

This produces a new *perturbed* chain complex \((C_*, d + \delta)\).
Definition

Let \((C_*, d)\) be a chain complex. A \textit{perturbation} \(\delta : C_* \to C_{* - 1}\) is an operator of degree \(-1\) satisfying \((d + \delta) \circ (d + \delta) = 0\).

This produces a new \textit{perturbed} chain complex \((C_*, d + \delta)\)

Let \(\rho = (f, g, h)\) be a reduction

\[
\begin{align*}
(C_*, d_C) & \xleftarrow{g} (D_*, d_D) \\
\xrightarrow{f} & \\
\end{align*}
\]
Definition

Let \((C_*, d)\) be a chain complex. A **perturbation** \(\delta : C_* \to C_{*-1}\) is an operator of degree \(-1\) satisfying \((d + \delta) \circ (d + \delta) = 0\).

This produces a new **perturbed** chain complex \((C_*, d + \delta)\).

Let \(\rho = (f, g, h)\) be a reduction

\[
\begin{array}{ccc}
(C_*, d_C) & \xleftarrow{f} & (D_*, d_D) \\
\xrightarrow{g} & & \xrightarrow{h} \\
\end{array}
\]

What happens if we perturb \(d_C\) or \(d_D\)?
Perturbation theorems

Theorem (Trivial Perturbation Lemma, TPL)

Let \(\rho = (f, g, h) : C^* \Rightarrow D^* \) be a reduction, and \(\delta_D \) a perturbation of \(d_D \).

Then we have a new reduction:

\[
(C^*, d_C + \delta_C) \downarrow f \rightarrow (D^*, d_D + \delta_D) \leftarrow g
\]

where \(\delta_C = g \circ \delta_D \circ f \).
Theorem (Trivial Perturbation Lemma, TPL)

Let \(\rho = (f, g, h) : C_\ast \Rightarrow D_\ast \) be a reduction, and \(\delta_D \) a perturbation of \(d_D \).
Theorem (Trivial Perturbation Lemma, TPL)

Let $\rho = (f, g, h) : C_* \Rightarrow D_*$ be a reduction, and δ_D a perturbation of d_D.

Then we have a new reduction: $(C_*, d_C + \delta_C) \rightleftarrows (D_*, d_D + \delta_D)$

where $\delta_C = g \circ \delta_D \circ f$.

Diagram:

```
  h
  \downarrow
  f

(C_*, d_C + \delta_C) \rightarrow (D_*, d_D + \delta_D)
```

where g.
Theorem (Basic Perturbation Lemma, BPL)

Let \(\rho = (f, g, h) : C^* \Rightarrow D^* \) be a reduction, and \(\delta_C \) a perturbation of \(C \) such that the composition \(h \circ \delta_C \) is pointwise nilpotent.

Then we have a new reduction:

\[
(C^*, d_C + \delta_C) \xrightarrow{f'} \xrightarrow{g'} (D^*, d_D + \delta_D)
\]

where \(\delta_D = f \circ \delta_C \circ \phi \circ g = f \circ \psi \circ \delta_C \circ g; \)
\(f' = f \circ \psi = f \circ (\text{Id}_{C^*} - \delta_C \circ \phi \circ h) \);
\(g' = \phi \circ g; \)
\(h' = \phi \circ h = h \circ \psi \);

with the operators \(\phi \) and \(\psi \) defined by

\[
\phi = \sum_{i=0}^{\infty} (-1)^i (h \circ \delta_C)^i, \quad \psi = \sum_{i=0}^{\infty} (-1)^i (\delta_C \circ h)^i = \text{Id}_{C^*} - \delta_C \circ \phi \circ h
\]
Theorem (Basic Perturbation Lemma, BPL)

Let \(\rho = (f, g, h) : C_* \Rightarrow D_* \) be a reduction, and \(\delta_C \) a perturbation of \(d_C \) such that the composition \(h \circ \delta_C \) is pointwise nilpotent.

Then we have a new reduction:

\[
(C_*, d_C + \delta_C) \downarrow = (D_*, d_D + \delta_D)\]

where

\[
\delta_D = f \circ \delta_C \circ \phi \circ g \]
\[
f' = f \circ \psi = f \circ (id_C - \delta_C \circ \phi \circ h)\]
\[
g' = \phi \circ g\]
\[
h' = \phi \circ h = h \circ \psi\]

with the operators \(\phi \) and \(\psi \) defined by

\[
\phi = \sum_{i=0}^{\infty} (-1)^i (h \circ \delta_C)^i
\]
\[
\psi = \sum_{i=0}^{\infty} (-1)^i (\delta_C \circ h)^i = id_C - \delta_C \circ \phi \circ h\]
Theorem (Basic Perturbation Lemma, BPL)

Let $\rho = (f, g, h) : C_* \Rightarrow D_*$ be a reduction, and δ_C a perturbation of d_C such that the composition $h \circ \delta_C$ is pointwise nilpotent.

Let $\rho = (f, g, h) : C_* \Rightarrow D_*$ be a reduction, and δ_C a perturbation of d_C such that the composition $h \circ \delta_C$ is pointwise nilpotent.
Perturbation theorems

Theorem (Basic Perturbation Lemma, BPL)

Let \(\rho = (f, g, h) : C_* \Rightarrow D_* \) be a reduction, and \(\delta_C \) a perturbation of \(d_C \) such that the composition \(h \circ \delta_C \) is pointwise nilpotent. Then we have a new reduction:

\[
\begin{align*}
(C_*, d_C + \delta_C) & \xrightarrow{h'} (D_*, d_D + \delta_D) \\
& \xleftarrow{f'}
\end{align*}
\]

with the operators \(\phi \) and \(\psi \) defined by

\[
\phi = \sum_{i=0}^{\infty} (-1)^i (h \circ \delta_C)_i \quad \text{and} \quad \psi = \sum_{i=0}^{\infty} (-1)^i (\delta_C \circ h)_i = \text{Id}_{C_*} - \delta_C \circ \phi \circ h.
\]
Theorem (Basic Perturbation Lemma, BPL)

Let \(\rho = (f, g, h) : C_* \Rightarrow D_* \) be a reduction, and \(\delta_C \) a perturbation of \(d_C \) such that the composition \(h \circ \delta_C \) is pointwise nilpotent. Then we have a new reduction:

\[
\begin{array}{ccc}
C_* & \xleftarrow{\delta_C} & D_* \\
\downarrow{h'} & & \downarrow{f'} \\
C_* & \xleftarrow{\delta_C} & D_* \\
\end{array}
\]

where

\[
\delta_D = f \circ \delta_C \circ \phi \circ g = f \circ \psi \circ \delta_C \circ g;
\]

\[
f' = f \circ \psi = f \circ (\text{Id}_{C_*} - \delta_C \circ \phi \circ h);
\]

\[
g' = \phi \circ g;
\]

\[
h' = \phi \circ h = h \circ \psi;
\]

with the operators \(\phi \) and \(\psi \) defined by

\[
\phi = \sum_{i=0}^{\infty} (-1)^i (h \circ \delta_C)^i,
\]

\[
\psi = \sum_{i=0}^{\infty} (-1)^i (\delta_C \circ h)^i = \text{Id}_{C_*} - \delta_C \circ \phi \circ h
\]
Algebraic cone construction

Definition

Let $\Phi : (\mathbb{C}^*, d_{\mathbb{C}}) \to (\mathbb{D}^*, d_{\mathbb{D}})$ be a chain complex morphism. The **cone** of Φ, Cone$(\Phi) ≡ (\mathbb{A}^*, d_{\mathbb{A}})$, is a chain complex given by

$A_n = \mathbb{C}_n \oplus \mathbb{D}_{n+1}$,

with differential map $d_{\mathbb{A}}(c, d) = (d_{\mathbb{C}}(c), \Phi(c) - d_{\mathbb{D}}(d))$.
Definition

Let $\Phi : (C_*, d_C) \to (D_*, d_D)$ be a chain complex morphism. The *Cone* of Φ, $\text{Cone}(\Phi)_* \equiv (A_*, d_A)$, is a chain complex given by $A_n = C_n \oplus D_{n+1}$, with differential map $d_A(c, d) = (d_C(c), \Phi(c) - d_D(d))$.
Definition

Let \(\Phi : (C_*, d_C) \rightarrow (D_*, d_D) \) be a chain complex morphism. The Cone of \(\Phi \), \(\text{Cone}(\Phi)_* \equiv (A_*, d_A) \), is a chain complex given by \(A_n = C_n \oplus D_{n+1} \), with differential map \(d_A(c, d) = (d_C(c), \Phi(c) - d_D(d)) \).
Algebraic cone construction
A general algorithm can be produced:

- **Input**: $\Phi : C_* \to D_*$ and effective homologies for C_* and D_*.
- **Output**: An effective homology for $A_* = \text{Cone}(\Phi)$.

Theorem
Theorem

A general algorithm can be produced:

- **Input:** $\Phi : C_* \rightarrow D_*$ and effective homologies for C_* and D_*.
- **Output:** An effective homology for $A_* = \text{Cone}(\Phi)$.

Proof:
Theorem

A general algorithm can be produced:

- **Input:** $\Phi : C_* \rightarrow D_*$ and effective homologies for C_* and D_*.
- **Output:** An effective homology for $A_* = \text{Cone}(\Phi)$.

Proof:

$$
\begin{array}{ccc}
C_* & \xrightarrow{h} & D_* \\
\downarrow f & & \downarrow h' \\
EC_* & \xrightarrow{g} & ED_*
\end{array}
$$
A general algorithm can be produced:

- **Input:** \(\Phi : C_* \rightarrow D_* \) and effective homologies for \(C_* \) and \(D_* \).
- **Output:** An effective homology for \(A_* = \text{Cone}(\Phi) \).

Proof:

1. Particular case \(\Phi = 0 \) (direct sum).
Theorem

A general algorithm can be produced:

- **Input:** $\Phi : C_* \to D_*$ and effective homologies for C_* and D_*.
- **Output:** An effective homology for $A_* = \text{Cone}(\Phi)$.

Proof:

1. Particular case $\Phi = 0$ (direct sum).

\[
\begin{align*}
\begin{bmatrix}
 0 & 0 & 0 & h' \\
 0 & 0 & 0 & -h' \\
 f & g & f' & g' \\
 d_C & 0 & d_{EC} & 0 \\
 0 & -d_D & 0 & -d_{ED}
\end{bmatrix}
\end{align*}
\]
Theorem

A general algorithm can be produced:

- **Input:** $\Phi : C_* \to D_*$ and effective homologies for C_* and D_*.
- **Output:** An effective homology for $A_* = \text{Cone}(\Phi)$.

Proof:

1. Particular case $\Phi = 0$ (direct sum).
2. We install Φ.

The reduction is not valid.

\[
\begin{bmatrix}
 d_C & 0 & 0 \\
 \phi & -d_D & 0 \\
\end{bmatrix}
\begin{bmatrix}
 d_{EC} & 0 & 0 \\
 0 & -d_{ED} & 0 \\
\end{bmatrix}
\begin{bmatrix}
 f & 0 & 0 \\
 0 & f' & 0 \\
\end{bmatrix}
\begin{bmatrix}
 g & 0 & 0 \\
 0 & g' & 0 \\
\end{bmatrix}
\begin{bmatrix}
 h & 0 & 0 \\
 0 & -h' & 0 \\
\end{bmatrix}
\]

$D_A \quad D_{A'} \quad F \quad G \quad H$
Algebraic cone construction

Theorem

A general algorithm can be produced:

- Input: $\Phi : C_* \rightarrow D_*$ and effective homologies for C_* and D_*.
- Output: An effective homology for $A_* = \text{Cone}(\Phi)$.

Proof:

1. Particular case $\Phi = 0$ (direct sum).
2. We install Φ.
3. We apply the BPL.

\[
\begin{pmatrix}
 d_C & 0 \\
 \Phi & -d_D \\
\end{pmatrix}
\begin{pmatrix}
 d_{EC} & 0 \\
 f' \Phi g & -d_{ED} \\
\end{pmatrix}
\begin{pmatrix}
 f & 0 \\
 f' \Phi h & f' \\
\end{pmatrix}
\begin{pmatrix}
 g & 0 \\
 -h' \Phi g & g' \\
\end{pmatrix}
\begin{pmatrix}
 h & 0 \\
 h' \Phi h & -h' \\
\end{pmatrix}
\]

DA DA' F G H
A bicomplex C^\bullet,\bullet is a bigraded free \mathbb{Z}-module C^p,q for $p, q \in \mathbb{Z}$ provided with morphisms $d^\prime_{p,q}: C_{p,q} \rightarrow C_{p-1,q}$ and $d^\prime\prime_{p,q}: C_{p,q} \rightarrow C_{p,q-1}$ satisfying $d^\prime_{p-1,q} \circ d^\prime_{p,q} = 0$, $d^\prime\prime_{p,q-1} \circ d^\prime\prime_{p,q} = 0$, and $d^\prime_{p,q-1} \circ d^\prime\prime_{p,q} + d^\prime\prime_{p-1,q} \circ d^\prime_{p,q} = 0$.

The total (chain) complex $T^\bullet = T^\bullet(C^\bullet,\bullet) = (T_n,d_n)$ for $n \in \mathbb{Z}$ is the chain complex given by $T_n = \bigoplus_{p+q = n} C_{p,q}$ and differential map $d_n(x) = d^\prime_{p,q}(x) + d^\prime\prime_{p,q}(x)$ for $x \in C_{p,q}$.
A bicomplex $C_{*,*}$ is a bigraded free \mathbb{Z}-module $C_{*,*} = \{C_{p,q}\}_{p,q \in \mathbb{Z}}$ provided with morphisms $d'_p,q : C_{p,q} \rightarrow C_{p-1,q}$ and $d''_p,q : C_{p,q} \rightarrow C_{p,q-1}$ satisfying $d'_{p-1,q} \circ d'_p,q = 0$, $d''_{p,q-1} \circ d''_p,q = 0$, and $d'_{p,q-1} \circ d''_p,q + d''_{p-1,q} \circ d'_p,q = 0$.
A bicomplex $C_{*,*}$ is a bigraded free \mathbb{Z}-module $C_{*,*} = \{ C_{p,q} \}_{p,q \in \mathbb{Z}}$ provided with morphisms $d'_p,q : C_{p,q} \to C_{p-1,q}$ and $d''_{p,q} : C_{p,q} \to C_{p,q-1}$ satisfying $d'_{p-1,q} \circ d'_p,q = 0$, $d''_{p,q-1} \circ d''_{p,q} = 0$, and $d'_{p,q-1} \circ d''_{p,q} + d''_{p-1,q} \circ d'_p,q = 0$.

The total (chain) complex $T_* = T_*(C_{*,*}) = (T_n, d_n)_{n \in \mathbb{Z}}$ is the chain complex given by $T_n = \bigoplus_{p+q=n} C_{p,q}$ and differential map $d_n(x) = d'_p,q(x) + d''_{p,q}(x)$ for $x \in C_{p,q}$.

\hspace{1cm}
A **bicomplex** $C_{*, *}$ is a bigraded free \mathbb{Z}-module $C_{*, *} = \{ C_{p, q} \}_{p, q \in \mathbb{Z}}$ provided with morphisms $d'_p,q : C_{p, q} \to C_{p-1, q}$ and $d''_p,q : C_{p, q} \to C_{p, q-1}$ satisfying $d'_{p-1,q} \circ d'_p,q = 0$, $d''_{p-1,q} \circ d''_p,q = 0$, and $d'_p,q \circ d''_p,q + d''_{p-1,q} \circ d'_p,q = 0$.

The **total (chain) complex** $T_* = T_*(C_{*, *}) = (T_n, d_n)_{n \in \mathbb{Z}}$ is the chain complex given by $T_n = \bigoplus_{p+q = n} C_{p, q}$ and differential map $d_n(x) = d'_p,q(x) + d''_p,q(x)$ for $x \in C_{p, q}$.
Theorem

A general algorithm can be produced:

Input: A bounded bicomplex C^* and effective homologies of each column.

Output: An effective homology for C^*.

Proof:
Theorem

A general algorithm can be produced:

- Input: A bounded bicomplex C_\ast and effective homologies of each column.
- Output: An effective homology for C_\ast.

Proof:
A general algorithm can be produced:

- **Input:** A bounded bicomplex C_* and effective homologies of each column.
- **Output:** An effective homology for C_*.

Proof:

1. We consider only the vertical arrows.

\[
\begin{array}{cccc}
C_{0,3} & C_{1,3} & C_{2,3} & C_{3,3} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
C_{0,2} & C_{1,2} & C_{2,2} & C_{3,2} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
C_{0,1} & C_{1,1} & C_{2,1} & C_{3,1} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
C_{0,0} & C_{1,0} & C_{2,0} & C_{3,0} \\
\end{array}
\]

\[
\begin{array}{cccc}
EC_{0} & EC_{1} & EC_{2} & EC_{3} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
EC_{0} & EC_{1} & EC_{2} & EC_{3} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
EC_{0} & EC_{1} & EC_{2} & EC_{3} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
EC_{0} & EC_{1} & EC_{2} & EC_{3} \\
\end{array}
\]
Theorem

A general algorithm can be produced:

- **Input**: A bounded bicomplex C_* and effective homologies of each column.
- **Output**: An effective homology for C_*.

Proof:

1. We consider only the vertical arrows.

\[\begin{array}{cccccc}
C_0,0 & C_1,0 & C_2,0 & C_3,0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
EC_0 & EC_1 & EC_2 & EC_3 \\
\end{array}\]

\[\begin{array}{cccccc}
C_0,1 & C_1,1 & C_2,1 & C_3,1 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
EC_1 & EC_1 & EC_2 & EC_3 \\
\end{array}\]

\[\begin{array}{cccccc}
C_0,2 & C_1,2 & C_2,2 & C_3,2 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
EC_2 & EC_2 & EC_2 & EC_3 \\
\end{array}\]

\[\begin{array}{cccccc}
C_0,3 & C_1,3 & C_2,3 & C_3,3 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
EC_3 & EC_3 & EC_3 & EC_3 \\
\end{array}\]
A general algorithm can be produced:

- **Input**: A bounded bicomplex C_\ast and effective homologies of each column.
- **Output**: An effective homology for C_\ast.

Proof:

1. We consider only the vertical arrows.

2. We *perturb* by adding the horizontal maps.
A general algorithm can be produced:

- **Input:** A bounded bicomplex C_* and effective homologies of each column.
- **Output:** An effective homology for C_*.

Proof:

1. We consider only the vertical arrows.

2. We perturb by adding the horizontal maps.

3. We apply the BPL.
A general algorithm can be produced:

- **Input:** A bounded bicomplex C_\ast and effective homologies of each column.
- **Output:** An effective homology for C_\ast.

Proof:

1. We consider only the vertical arrows.
2. We perturb by adding the horizontal maps.
3. We apply the BPL.
Theorem (Twisted Eilenberg-Zilber)

Given two simplicial sets G and B and a twisting operator $\tau : B \to G$, it is possible to construct a reduction $\rho = (f, g, h) : C^\ast(G \times \tau B) \Rightarrow C^\ast(G) \otimes t C^\ast(B)$ where $C^\ast(G) \otimes t C^\ast(B)$ is a chain complex with the same underlying graded module as the tensor product $C^\ast(G) \otimes C^\ast(B)$, but the differential is modified to take account of the twisting operator τ.

Proof: BPL.
Theorem (Eilenberg-Zilber)

Given two simplicial sets G and B, there exists a reduction

$$\rho = (f, g, h) : C_*(G \times B) \Rightarrow C_*(G) \otimes C_*(B)$$
Theorem (Eilenberg-Zilber)

Given two simplicial sets G and B, there exists a reduction

$$\rho = (f, g, h) : C_\ast(G \times B) \Rightarrow C_\ast(G) \otimes C_\ast(B)$$

Theorem (Twisted Eilenberg-Zilber)

Given two simplicial sets G and B and a twisting operator $\tau : B \to G$, it is possible to construct a reduction

$$\rho = (f, g, h) : C_\ast(G \times \tau B) \Rightarrow C_\ast(G) \otimes_t C_\ast(B)$$

where $C_\ast(G) \otimes_t C_\ast(B)$ is a chain complex with the same underlying graded module as the tensor product $C_\ast(G) \otimes C_\ast(B)$, but the differential is modified to take account of the twisting operator τ.
Twisted Eilenberg-Zilber Theorem

Theorem (Eilenberg-Zilber)

Given two simplicial sets G and B, there exists a reduction

$$
\rho = (f, g, h) : C_*(G \times B) \Rightarrow C_*(G) \otimes C_*(B)
$$

Theorem (Twisted Eilenberg-Zilber)

Given two simplicial sets G and B and a twisting operator $\tau : B \rightarrow G$, it is possible to construct a reduction

$$
\rho = (f, g, h) : C_*(G \times_\tau B) \Rightarrow C_*(G) \otimes_\tau C_*(B)
$$

where $C_*(G) \otimes_\tau C_*(B)$ is a chain complex with the same underlying graded module as the tensor product $C_*(G) \otimes C_*(B)$, but the differential is modified to take account of the twisting operator τ.

Proof: BPL.
Theorem

A general algorithm can be produced:

Input: two simplicial sets G and B (where B is 1-reduced), a twisting operator $\tau : B \to G$, and effective homologies for G and B.

Output: An effective homology for $E = G \times \tau B$.

Proof:

It is constructed as the composition of two equivalences:

$$C^\ast(G \times \tau B) \xrightarrow{\rho_1} \xrightarrow{\rho_2} \xrightarrow{\rho_3} C^\ast(G) \otimes tC^\ast(B) \xrightarrow{\rho_2} \xrightarrow{\rho_3} C^\ast(G \times \tau B)$$

where ρ_2 and ρ_3 are obtained by applying the TPL and the BPL respectively.
Theorem

A general algorithm can be produced:
- **Input**: two simplicial sets G and B (where B is 1-reduced), a twisting operator $\tau : B \to G$, and effective homologies for G and B.
- **Output**: An effective homology for $E = G \times_\tau B$.

Proof:
It is constructed as the composition of two equivalences:

\[
\begin{align*}
\rho_1 &\downarrow & \rho_2 &\downarrow & \rho_3 \\
\downarrow & & \downarrow & & \downarrow \\
C^* (G \times_\tau B) &\cong & C^* (G) \otimes t^* C^* (B) &\cong & C^* (E) \otimes t^* C^* (B)
\end{align*}
\]

where ρ_2 and ρ_3 are obtained by applying the TPL and the BPL respectively.
Effective homology of twisted Cartesian products

Theorem

A general algorithm can be produced:

- **Input:** two simplicial sets G and B (where B is 1-reduced), a twisting operator $\tau : B \rightarrow G$, and effective homologies for G and B.
- **Output:** An effective homology for $E = G \times_{\tau} B$.

Proof: It is constructed as the composition of two equivalences:

$$
\begin{align*}
C_\ast(G \times_{\tau} B) & \xrightarrow{\text{Id}} C_\ast(G \times_{\tau} B) \\
C_\ast(G) \otimes_t C_\ast(B) & \xrightarrow{\rho_1} C_\ast(G) \otimes_t C_\ast(B) \\
DG_\ast \otimes_t DB_\ast & \xrightarrow{\rho_2} DG_\ast \otimes_t DB_\ast \\
EG_\ast \otimes_t EB_\ast & \xrightarrow{\rho_3} EG_\ast \otimes_t EB_\ast
\end{align*}
$$

where ρ_2 and ρ_3 are obtained by applying the TPL and the BPL respectively.
Theorem

A general algorithm can be produced:

- **Input:** two simplicial sets G and B (where B is 1-reduced) and a twisting operator $\tau : B \to G$, and effective homologies for B and $E = G \times_\tau B$.
- **Output:** An effective homology for G.
Effective homology of the fiber of a fibration

Theorem
A general algorithm can be produced:

- **Input:** two simplicial sets G and B (where B is 1-reduced) and a twisting operator $\tau : B \to G$, and effective homologies for B and $E = G \times_{\tau} B$.
- **Output:** An effective homology for G.

Proof: It is constructed as the composition of two equivalences:

\[
\begin{align*}
\text{Cobar}^{C_*(B)}(C_*(G) \otimes_t C_*(B), \mathbb{Z}) & \xrightarrow{\text{Id}} C_*(G) \\
C_*(G) & \xrightarrow{\text{Cobar}^{C_*(B)}(C_*(G) \otimes_t C_*(B), \mathbb{Z})} \text{Cobar}^{\text{DB}_*}(DE_*, \mathbb{Z}) \\
& \xrightarrow{\text{Cobar}^{\text{EB}_*}(EE_*, \mathbb{Z})} \text{Cobar}^{\text{EB}_*}(EE_*, \mathbb{Z})
\end{align*}
\]
Effective homology of the fiber of a fibration

Theorem

A general algorithm can be produced:

- **Input:** two simplicial sets G and B (where B is 1-reduced) and a twisting operator $\tau : B \to G$, and effective homologies for B and $E = G \times_\tau B$.

- **Output:** An effective homology for G.

Proof: It is constructed as the composition of two equivalences:

\[
\begin{align*}
\text{Cobar}^{C_*(B)}(C_*(G) \otimes_t C_*(B), \mathbb{Z}) & \cong DB_* \left(DE_*, \mathbb{Z} \right) \\
C_*(G) & \cong \text{Cobar}^{C_*(B)}(C_*(G) \otimes_t C_*(B), \mathbb{Z}) & \cong EB_* \left(EE_*, \mathbb{Z} \right)
\end{align*}
\]

In particular, it can be applied for computing the effective homology of a loop space $\Omega(X)$, which is the fiber of a fibration $\Omega(X) \hookrightarrow \Omega(X) \times_\tau X \to X$ where the total space $E = \Omega(X) \times_\tau X$ is contractible, such that a reduction $C_*\left(\Omega(X) \times_\tau X\right) \Rightarrow \mathbb{Z}$ can be built.
Discrete Morse theory

Definition
Let $C^* = (C^p, d_p)_{p \in \mathbb{Z}}$ be a free chain complex with distinguished \mathbb{Z}-basis $\beta_p \subset C^p$. A discrete vector field V on C^* is a collection of pairs $V = \{ (\sigma_i; \tau_i) \}_{i \in I}$ satisfying the conditions:

1. Every σ_i is some element of β_p, in which case $\tau_i \in \beta_p + 1$.
2. The degree p depends on i and in general is not constant.
3. Every component σ_i is a regular face of the corresponding τ_i.
4. Each generator (cell) of C^* appears at most one time in V.

Definition
A V-path of degree p and length m is a sequence $\pi = (\sigma_i k, \tau_i k)_{0 \leq k < m}$ satisfying:

1. Every pair $(\sigma_i k, \tau_i k)$ is a component of V and $\tau_i k$ is a p-cell.
2. For every $0 < k < m$, the component $\sigma_i k$ is a face of $\tau_i k - 1$, non necessarily regular, but different from $\sigma_i k - 1$.
Discrete Morse theory

Definition

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ a free chain complex with distinguished \mathbb{Z}-basis $\beta_p \subset C_p$. A *discrete vector field* V on C_* is a collection of pairs $V = \{(\sigma_i; \tau_i)\}_{i \in I}$ satisfying the conditions:

- Every σ_i is some element of β_p, in which case $\tau_i \in \beta_{p+1}$. The degree p depends on i and in general is not constant.
- Every component σ_i is a *regular face* of the corresponding τ_i.
- Each generator (*cell*) of C_* appears at most one time in V.

Ana Romero

Basic Perturbation Lemma, effective homology and homology of 2-types

HPT Workshop 17 / 29
Definition

Let $C_\ast = (C_p, d_p)_{p \in \mathbb{Z}}$ a free chain complex with distinguished \mathbb{Z}-basis $\beta_p \subset C_p$. A discrete vector field V on C_\ast is a collection of pairs $V = \{(\sigma_i; \tau_i)\}_{i \in I}$ satisfying the conditions:

- Every σ_i is some element of β_p, in which case $\tau_i \in \beta_{p+1}$. The degree p depends on i and in general is not constant.
- Every component σ_i is a regular face of the corresponding τ_i.
- Each generator (cell) of C_\ast appears at most one time in V.

Definition

A V-path of degree p and length m is a sequence $\pi = ((\sigma_{i_k}, \tau_{i_k}))_{0 \leq k < m}$ satisfying:

- Every pair $((\sigma_{i_k}, \tau_{i_k}))$ is a component of V and τ_{i_k} is a p-cell.
- For every $0 < k < m$, the component σ_{i_k} is a face of $\tau_{i_{k-1}}$, non necessarily regular, but different from $\sigma_{i_{k-1}}$.
Discrete Morse theory

Definition
A discrete vector field V is admissible if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Definition
A cell σ which does not appear in a discrete vector field V is called a critical cell.

Theorem
Let $C^* = (C_p, d_p)$ $p \in \mathbb{Z}$ be a free chain complex and $V = \{(\sigma_i; \tau_i)\} i \in I$ be an admissible discrete vector field on C^*. Then the vector field V defines a canonical reduction $\rho = (f, g, h) : (C_p, d_p) \Rightarrow (C^c_p, d'_p)$ where $C^c_p = \mathbb{Z}[\beta^c_p]$ is the free \mathbb{Z}-module generated by the critical p-cells.

Proof:
Uses BPL.
Discrete Morse theory

Definition

A discrete vector field V is *admissible* if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Theorem

Let $C^* = (C_p, d_p)$ $\in \mathbb{Z}$ be a free chain complex and $V = \{ (\sigma_i; \tau_i) \}_{i \in I}$ be an admissible discrete vector field on C^*. Then the vector field V defines a canonical reduction $\rho = (f, g, h) : (C_p, d_p) \Rightarrow (C_c p, d' p)$ where $C_c p = \mathbb{Z}[\beta_c p]$ is the free \mathbb{Z}-module generated by the critical p-cells.

Proof: Uses BPL.
Discrete Morse theory

Definition

A discrete vector field V is *admissible* if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Definition

A cell σ which does not appear in a discrete vector field V is called a *critical cell*.
Definition

A discrete vector field V is *admissible* if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Definition

A cell σ which does not appear in a discrete vector field V is called a *critical cell*.

Theorem

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ be a free chain complex and $V = \{(\sigma_i; \tau_i)\}_{i \in I}$ be an admissible discrete vector field on C_*. Then the vector field V defines a canonical reduction $\rho = (f, g, h) : (C_p, d_p) \Rightarrow (C^c_p, d'_p)$ where $C^c_p = \mathbb{Z}[\beta^c_p]$ is the free \mathbb{Z}-module generated by the critical p-cells.
Definition

A discrete vector field V is *admissible* if for every $p \in \mathbb{Z}$, a function $\lambda_p : \beta_p \to \mathbb{N}$ is provided satisfying the following property: every V-path starting from $\sigma \in \beta_p$ has a length bounded by $\lambda_p(\sigma)$.

Definition

A cell σ which does not appear in a discrete vector field V is called a **critical cell**.

Theorem

Let $C_* = (C_p, d_p)_{p \in \mathbb{Z}}$ be a free chain complex and $V = \{(\sigma_i; \tau_i)\}_{i \in I}$ be an admissible discrete vector field on C_*. Then the vector field V defines a canonical reduction $\rho = (f, g, h) : (C_p, d_p) \Rightarrow (C^c_p, d'_p)$ where $C^c_p = \mathbb{Z}[\beta^c_p]$ is the free \mathbb{Z}-module generated by the critical p-cells.

Proof: Uses BPL.
16 vertices
24 edges
8 squares
Discrete Morse theory and digital images

16 vertices
24 edges
8 squares
Discrete Morse theory and digital images

- 16 vertices
- 24 edges
- 8 squares

- 1 vertex
- 1 edge
Other applications of BPL and effective homology

Homotopy groups of spaces by means of Whitehead and Postnikov towers.
Spectral sequences of filtered complexes.
Persistent homology.
Koszul homology.
Bousfield-Kan spectral sequence.
Homology of groups.
Homology of 2-types.
Homotopy groups of spaces by means of Whitehead and Postnikov towers.
Other applications of BPL and effective homology

- Homotopy groups of spaces by means of Whitehead and Postnikov towers.

- Spectral sequences of filtered complexes.
Other applications of BPL and effective homology

- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Spectral sequences of filtered complexes.
- Persistent homology.
Other applications of BPL and effective homology

- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Spectral sequences of filtered complexes.
- Persistent homology.
- Koszul homology.
Other applications of BPL and effective homology

- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Spectral sequences of filtered complexes.
- Persistent homology.
- Koszul homology.
- Bousfield-Kan spectral sequence.
Other applications of BPL and effective homology

- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Spectral sequences of filtered complexes.
- Persistent homology.
- Koszul homology.
- Bousfield-Kan spectral sequence.
- Homology of groups.
Other applications of BPL and effective homology

- Homotopy groups of spaces by means of Whitehead and Postnikov towers.
- Spectral sequences of filtered complexes.
- Persistent homology.
- Koszul homology.
- Bousfield-Kan spectral sequence.
- Homology of groups.
- Homology of 2-types.
Homology of groups

Definition
A 2-type \(X \) is a topological space with \(\pi_i(X) = 0 \) for \(i \neq 1, 2 \).

Definition
A resolution \(F^* \) for a group \(G \) is an acyclic chain complex of \(\mathbb{Z}G \)-modules:

\[
\cdots \rightarrow F_2 \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{\varepsilon} F_{-1} \rightarrow \mathbb{Z} \rightarrow 0
\]

A chain complex of Abelian groups is obtained:

\[
\mathbb{Z} \otimes \mathbb{Z}G F^*
\]

Theorem
Let \(G \) be a group and \(F^*, F'^* \) two free resolutions of \(G \). Then

\[
H_n(\mathbb{Z} \otimes \mathbb{Z}G F^*) \cong H_n(\mathbb{Z} \otimes \mathbb{Z}G F'^*)
\]

for all \(n \in \mathbb{N} \).
Homology of groups

Definition

A 2-type X is a topological space with $\pi_i(X) = 0$ for $i \neq 1, 2$.
Definition

A 2-type X is a topological space with $\pi_i(X) = 0$ for $i \neq 1, 2$.

Definition

A resolution F_\ast for a group G is an acyclic chain complex of $\mathbb{Z}G$-modules

$$\cdots \longrightarrow F_2 \overset{d_2}{\longrightarrow} F_1 \overset{d_1}{\longrightarrow} F_0 \overset{\varepsilon}{\longrightarrow} F_{-1} = \mathbb{Z} \longrightarrow 0$$
Definition
A 2-type X is a topological space with $\pi_i(X) = 0$ for $i \neq 1, 2$.

Definition
A resolution F_\ast for a group G is an acyclic chain complex of $\mathbb{Z}G$-modules

$$\cdots \longrightarrow F_2 \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{\varepsilon} F_{-1} = \mathbb{Z} \longrightarrow 0$$

A chain complex of Abelian groups is obtained: $\mathbb{Z} \otimes_{\mathbb{Z}G} F_\ast$
Homology of groups

Definition

A 2-type X is a topological space with $\pi_i(X) = 0$ for $i \neq 1, 2$.

Definition

A *resolution* F_\ast for a group G is an acyclic chain complex of $\mathbb{Z}G$-modules

$$
\cdots \rightarrow F_2 \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{\varepsilon} F_{-1} = \mathbb{Z} \rightarrow 0
$$

A chain complex of Abelian groups is obtained: $\mathbb{Z} \otimes_{\mathbb{Z}G} F_\ast$

Theorem

Let G be a group and F_\ast, F'_\ast two free resolutions of G. Then

$$H_n(\mathbb{Z} \otimes_{\mathbb{Z}G} F_\ast) \cong H_n(\mathbb{Z} \otimes_{\mathbb{Z}G} F'_\ast) \quad \text{for all } n \in \mathbb{N}$$
Homology of groups

Definition
Given a group \(G \), the homology groups \(H_n(G) \) are defined as
\[
H_n(G) = \text{Hom}(\mathbb{Z} \otimes \mathbb{Z}G, F*)
\]
where \(F* \) is any free resolution for \(G \).

Drawback: for \(n > 1 \), \(K(G, 1)_n = G_n \).

For some particular cases, small (or minimal) resolutions can be directly constructed.

For instance, let \(G = \mathbb{C}_m \) with generator \(t \). The resolution
\[
F* \rightarrow t^{-1} \rightarrow \mathbb{Z}G \rightarrow t \rightarrow \mathbb{Z} \rightarrow 0
\]
produces
\[
H_i(G) = \begin{cases}
\mathbb{Z} & \text{if } i = 0 \\
\mathbb{Z}/m\mathbb{Z} & \text{if } i \text{ is odd} \\
0 & \text{if } i \text{ is even}, i > 0
\end{cases}
\]
Homology of groups

Definition

Given a group G, the *homology groups* $H_n(G)$ are defined as

$$H_n(G) = H_n(\mathbb{Z} \otimes_{\mathbb{Z}G} F_*), \quad n \in \mathbb{N},$$

where F_* is any free resolution for G.

One can always consider the bar resolution B_*, which satisfies

$$\mathbb{Z} \otimes_{\mathbb{Z}G} B_* \equiv C_*(K(G,1)).$$

Drawback: for $n > 1$, $K(G,1)_n = G_n$. For some particular cases, small (or minimal) resolutions can be directly constructed. For instance, let $G = C_m$ with generator t. The resolution

$$F_* \rightarrow \cdots \rightarrow \mathbb{Z} \xrightarrow{t} \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow 0$$

produces

$$H_i(G) = \begin{cases} \mathbb{Z} & \text{if } i = 0 \\ \mathbb{Z}/m\mathbb{Z} & \text{if } i \text{ is odd} \\ 0 & \text{if } i \text{ is even} \end{cases}, \quad i > 0.$$
Homology of groups

Definition

Given a group G, the homology groups $H_n(G)$ are defined as $H_n(G) = H_n(\mathbb{Z} \otimes_{\mathbb{Z}G} F_*)$, $n \in \mathbb{N}$, where F_* is any free resolution for G.

One can always consider the bar resolution $B_* = \text{Bar}_*(G)$.

Ana Romero

Basic Perturbation Lemma, effective homology and homology of 2-types
Homology of groups

Definition

Given a group G, the *homology groups* $H_n(G)$ are defined as

$$H_n(G) = H_n(\mathbb{Z} \otimes_{\mathbb{Z}G} F_\ast), \quad n \in \mathbb{N},$$

where F_\ast is any free resolution for G.

One can always consider the *bar resolution* $B_\ast = \text{Bar}_\ast(G)$, which satisfies

$$\mathbb{Z} \otimes_{\mathbb{Z}G} B_\ast \cong C_\ast(K(G, 1)).$$

Ana Romero

Basic Perturbation Lemma, effective homology and homology of 2-types

HPT Workshop 22 / 29
Homology of groups

Definition

Given a group G, the homology groups $H_n(G)$ are defined as

$$H_n(G) = H_n(\mathbb{Z} \otimes_{\mathbb{Z}G} F_\ast), \ n \in \mathbb{N},$$

where F_\ast is any free resolution for G.

One can always consider the bar resolution $B_\ast = \text{Bar}_\ast(G)$, which satisfies

$$\mathbb{Z} \otimes_{\mathbb{Z}G} B_\ast \equiv C_\ast(K(G,1)).$$

Drawback: for $n > 1$, $K(G,1)_n = G^n$.

Drawback: for $n > 1$, $K(G,1)_n = G^n$.

Ana Romero
Basic Perturbation Lemma, effective homology and homology of 2-types
HPT Workshop
Homology of groups

Definition

Given a group \(G \), the *homology groups* \(H_n(G) \) are defined as
\[
H_n(G) = H_n(\mathbb{Z} \otimes_{\mathbb{Z}G} F_\ast), \quad n \in \mathbb{N},
\]
where \(F_\ast \) is any free resolution for \(G \).

One can always consider the *bar resolution* \(B_\ast = \text{Bar}_\ast(G) \), which satisfies
\[
\mathbb{Z} \otimes_{\mathbb{Z}G} B_\ast \equiv C_\ast(K(G, 1)).
\]
Drawback: for \(n > 1 \), \(K(G, 1)_n = G^n \).

For some particular cases, small (or minimal) resolutions can be directly constructed.
Definition

Given a group G, the homology groups $H_n(G)$ are defined as

$$H_n(G) = H_n(\mathbb{Z} \otimes_{\mathbb{Z}G} F_*)$$

where F_* is any free resolution for G, $n \in \mathbb{N}$.

One can always consider the bar resolution $B_* = \text{Bar}_*(G)$, which satisfies

$$\mathbb{Z} \otimes_{\mathbb{Z}G} B_* \equiv C_*(K(G, 1)).$$

Drawback: for $n > 1$, $K(G, 1)_n = G^n$.

For some particular cases, small (or minimal) resolutions can be directly constructed.

For instance, let $G = C_m$ with generator t. The resolution F_*

$$\cdots \xrightarrow{t^{-1}} \mathbb{Z}G \xrightarrow{N} \mathbb{Z}G \xrightarrow{t^{-1}} \mathbb{Z}G \xrightarrow{} \mathbb{Z} \xrightarrow{} 0$$

produces

$$H_i(G) = \begin{cases}
\mathbb{Z} & \text{if } i = 0 \\
\mathbb{Z}/m\mathbb{Z} & \text{if } i \text{ is odd} \\
0 & \text{if } i \text{ is even, } i > 0
\end{cases}$$
Algorithm computing the effective homology of a group

Given G a group, F^\ast a (small) free \mathbb{Z}_G-resolution with a contracting homotopy $h^n: F^n \to F^{n+1}$.

Goal: an equivalence $C^\ast(K(G,1)) \iff E^\ast$ where E^\ast is an effective chain complex.

We consider the bar resolution $B^\ast = \text{Bar}^\ast(G)$ for G with contracting homotopy h'.

It is well known that there exists a morphism of chain complexes of \mathbb{Z}_G-modules $f: B^\ast \to F^\ast$ which is a homotopy equivalence.

An algorithm has been designed constructing the explicit expressions of f and the corresponding maps g, h, k.
Given G a group, F_* a (small) free $\mathbb{Z}G$-resolution with a *contracting homotopy* $h_n : F_n \rightarrow F_{n+1}$.
Given G a group, F_* a (small) free $\mathbb{Z}G$-resolution with a *contracting homotopy* $h_n : F_n \rightarrow F_{n+1}$.

Goal: an equivalence $C_*(K(G,1)) \iff E_*$ where E_* is an effective chain complex.
Algorithm computing the effective homology of a group

Given G a group, F_* a (small) free $\mathbb{Z}G$-resolution with a \textit{contracting homotopy} $h_n : F_n \to F_{n+1}$.

Goal: an equivalence $C_*(K(G, 1)) \iff E_*$ where E_* is an effective chain complex.

We consider the bar resolution $B_* = \text{Bar}_*(G)$ for G with contracting homotopy h'.
Given G a group, F_* a (small) free $\mathbb{Z}G$-resolution with a contracting homotopy $h_n: F_n \to F_{n+1}$.

Goal: an equivalence $C_* (K(G, 1)) \iff E_*$ where E_* is an effective chain complex.

We consider the bar resolution $B_* = \text{Bar}_*(G)$ for G with contracting homotopy h'.

It is well known that there exists a morphism of chain complexes of $\mathbb{Z}G$-modules $f: B_* \to F_*$ which is a homotopy equivalence.
Algorithm computing the effective homology of a group

Given G a group, F_\ast a (small) free $\mathbb{Z}G$-resolution with a *contracting homotopy* $h_n : F_n \rightarrow F_{n+1}$.

Goal: an equivalence $C_\ast(K(G, 1)) \iff E_\ast$ where E_\ast is an effective chain complex.

We consider the bar resolution $B_\ast = \text{Bar}_\ast(G)$ for G with contracting homotopy h'.

It is well known that there exists a morphism of chain complexes of $\mathbb{Z}G$-modules $f : B_\ast \rightarrow F_\ast$ which is a homotopy equivalence. An algorithm has been designed constructing the explicit expressions of f and the corresponding maps g, h and k
Algorithm computing the effective homology of a group

Applying the functor $\mathbb{Z} \otimes \mathbb{Z}^G$ we obtain an equivalence of chain complexes (of \mathbb{Z}-modules):

$$
\begin{array}{c}
\mathbb{Z} \otimes \mathbb{Z}^G \mathcal{B}^\ast \\
\downarrow \downarrow f \\
\mathbb{Z} \otimes \mathbb{Z}^G \mathcal{F}^\ast \\
\leftarrow \leftarrow g \\
\downarrow \downarrow k
\end{array}
$$

In order to obtain a strong chain equivalence we make use of the mapping cylinder construction.

$$
\begin{array}{c}
\mathbb{Z} \otimes \mathbb{Z}^G \mathcal{B}^\ast \\
\leftarrow \leftarrow \rho' \\
\Cylinder(f) \ast \rho \\
\Rightarrow \Rightarrow \\
\mathbb{Z} \otimes \mathbb{Z}^G \mathcal{F}^\ast
\end{array}
$$

Finally we observe that the left chain complex $\mathbb{Z} \otimes \mathbb{Z}^G \mathcal{B}^\ast$ is equal to $\mathcal{C}^\ast(\mathcal{K}(\mathbb{G}, 1))$. Moreover, if the initial resolution \mathcal{F}^\ast is of finite type (and small), then the right chain complex $\mathbb{Z} \otimes \mathbb{Z}^G \mathcal{F}^\ast \equiv \mathcal{E}^\ast$ is effective.
Applying the functor $\mathbb{Z} \otimes_{\mathbb{Z}G} -$ we obtain an equivalence of chain complexes (of \mathbb{Z}-modules):

$$
\begin{array}{ccc}
\mathbb{Z} \otimes_{\mathbb{Z}G} B_* & \xrightarrow{f} & \mathbb{Z} \otimes_{\mathbb{Z}G} F_* \\
\mathbb{Z} \otimes_{\mathbb{Z}G} B_* & \leftarrow \quad \text{Cylinder}(f) & \quad \leftarrow \mathbb{Z} \otimes_{\mathbb{Z}G} F_*
\end{array}
$$

Finally we observe that the left chain complex $\mathbb{Z} \otimes_{\mathbb{Z}G} B_*$ is equal to $C^*(K(G,1))$. Moreover, if the initial resolution F_* is of finite type (and small), then the right chain complex $\mathbb{Z} \otimes_{\mathbb{Z}G} F_*$ is effective.
Applying the functor $\mathbb{Z} \otimes_{\mathbb{Z}G} -$ we obtain an equivalence of chain complexes (of \mathbb{Z}-modules):

$$
\begin{array}{ccc}
\mathbb{Z} \otimes_{\mathbb{Z}G} B_* & \xrightarrow{h} & \mathbb{Z} \otimes_{\mathbb{Z}G} F_* \\
\downarrow f & & \downarrow k \\
\mathbb{Z} \otimes_{\mathbb{Z}G} B_* & \xleftarrow{g} & \mathbb{Z} \otimes_{\mathbb{Z}G} F_*
\end{array}
$$

In order to obtain a strong chain equivalence we make use of the mapping cylinder construction.

$$
\mathbb{Z} \otimes_{\mathbb{Z}G} B_* \xleftarrow{\rho'} \text{Cylinder}(f)_* \xrightarrow{\rho} \mathbb{Z} \otimes_{\mathbb{Z}G} F_*
$$
Applying the functor $\mathbb{Z} \otimes \mathbb{Z}_G$ — we obtain an equivalence of chain complexes (of \mathbb{Z}-modules):

$$
\begin{array}{ccc}
\mathbb{Z} \otimes \mathbb{Z}_G B_* & \xrightarrow{h} & \mathbb{Z} \otimes \mathbb{Z}_G F_* \\
\xleftarrow{\rho} & \xleftarrow{\rho'} & \xrightarrow{\rho}
\end{array}
$$

In order to obtain a strong chain equivalence we make use of the mapping cylinder construction.

$$
\begin{array}{ccc}
\mathbb{Z} \otimes \mathbb{Z}_G B_* & \xleftarrow{\rho'} & \text{Cylinder}(f)_* & \xrightarrow{\rho} & \mathbb{Z} \otimes \mathbb{Z}_G F_*
\end{array}
$$

Finally we observe that the left chain complex $\mathbb{Z} \otimes \mathbb{Z}_G B_*$ is equal to $C_*(K(G,1))$.

Algorithm computing the effective homology of a group

Applying the functor $\mathbb{Z} \otimes_{\mathbb{Z}G} -$ we obtain an equivalence of chain complexes (of \mathbb{Z}-modules):

$$\begin{array}{ccc}
\mathbb{Z} \otimes_{\mathbb{Z}G} B_* & \overset{h}{\longrightarrow} & \mathbb{Z} \otimes_{\mathbb{Z}G} F_* \\
g & \Downarrow & k \\
\mathbb{Z} \otimes_{\mathbb{Z}G} F_* & \overset{f}{\longrightarrow} & \mathbb{Z} \otimes_{\mathbb{Z}G} B_*
\end{array}$$

In order to obtain a strong chain equivalence we make use of the mapping cylinder construction.

$$\begin{array}{ccc}
\mathbb{Z} \otimes_{\mathbb{Z}G} B_* & \overset{\rho'}{\longrightarrow} & \text{Cylinder}(f)_* \\
g & \Downarrow & \rho \\
\mathbb{Z} \otimes_{\mathbb{Z}G} F_* & \overset{\rho}{\longrightarrow} & \mathbb{Z} \otimes_{\mathbb{Z}G} B_*
\end{array}$$

Finally we observe that the left chain complex $\mathbb{Z} \otimes_{\mathbb{Z}G} B_*$ is equal to $C_*(K(G,1))$. Moreover, if the initial resolution F_* is of finite type (and small), then the right chain complex $\mathbb{Z} \otimes_{\mathbb{Z}G} F_* \equiv E_*$ is effective.
Algorithm computing the effective homology of a group

Theorem

A general algorithm can be produced:

Input: a group G and a free resolution F^{\ast} of finite type with contracting homotopy.

Output: the effective homology of $K(G,1)$, that is, a (strong chain) equivalence $C^{\ast}(K(G,1)) \iff E^{\ast}$ where E^{\ast} is an effective chain complex.

Implemented in Common Lisp, enhancing the Kenzo system. It allows to compute homology of groups and, what is more important, to use the space $K(G,1)$ in other constructions allowing new computations.

Ana Romero

Basic Perturbation Lemma, effective homology and homology of 2-types

HPT Workshop 25 / 29
Theorem

A general algorithm can be produced:

- **Input:** a group G and a free resolution F_* of finite type with contracting homotopy.
- **Output:** the effective homology of $K(G,1)$, that is, a (strong chain) equivalence $C_*(K(G,1)) \iff E_*$ where E_* is an effective chain complex.
Algorithm computing the effective homology of a group

Theorem

A general algorithm can be produced:

- **Input:** a group G and a free resolution F_\ast of finite type with contracting homotopy.
- **Output:** the effective homology of $K(G,1)$, that is, a (strong chain) equivalence $C_\ast(K(G,1)) \iff E_\ast$ where E_\ast is an effective chain complex.

- Implemented in Common Lisp, enhancing the Kenzo system.
Algorithm computing the effective homology of a group

Theorem

A general algorithm can be produced:

- **Input:** a group G and a free resolution F_\ast of finite type with contracting homotopy.
- **Output:** the effective homology of $K(G,1)$, that is, a (strong chain) equivalence $C_\ast(K(G,1)) \iff E_\ast$ where E_\ast is an effective chain complex.

- Implemented in Common Lisp, enhancing the Kenzo system.
- It allows to compute homology of groups.
A general algorithm can be produced:

- **Input**: a group G and a free resolution F_* of finite type with contracting homotopy.
- **Output**: the effective homology of $K(G,1)$, that is, a (strong chain) equivalence $C_*(K(G,1)) \iff E_*$ where E_* is an effective chain complex.

- Implemented in Common Lisp, enhancing the Kenzo system.
- It allows to compute homology of groups and, what is more important,
Algorithm computing the effective homology of a group

Theorem

A general algorithm can be produced:

- **Input**: a group G and a free resolution F_\ast of finite type with contracting homotopy.
- **Output**: the effective homology of $K(G, 1)$, that is, a (strong chain) equivalence $C_\ast(K(G, 1)) \iff E_\ast$ where E_\ast is an effective chain complex.

- Implemented in Common Lisp, enhancing the Kenzo system.
- It allows to compute homology of groups and, what is more important, to use the space $K(G, 1)$ in other constructions allowing new computations.
Homology of 2-types

Let $G = C_3$, $A = \mathbb{Z}/3\mathbb{Z}$ with trivial G-action, and $f \in H^3(G, A) = \mathbb{Z}/3\mathbb{Z}$ a non-trivial cohomology class. This corresponds to a 2-type with $\pi_1 = G$ and $\pi_2 = A$, which can be seen as $X = K(A, 2) \times_f K(G, 1)$.

Finite (small) resolutions are known for G and A. The spaces $K(A, 1)$ and $K(G, 1)$ have effective homology thanks to the previous algorithm. From the effective homology of $K(A, 1)$, the effective homology of the classifying space $W K(A, 1) = K(A, 2)$ is built. From the effective homologies of $K(A, 2)$ and $K(G, 1)$, we construct the effective homology of $X = K(A, 2) \times_f K(G, 1)$.

Ana Romero
Basic Perturbation Lemma, effective homology and homology of 2-types
HPT Workshop 26 / 29
Let $G = C_3$, $A = \mathbb{Z}/3\mathbb{Z}$ with trivial G-action, and $[f] \in H^3(G, A) = \mathbb{Z}/3\mathbb{Z}$ a non-trivial cohomology class.
Homology of 2-types

Let $G = C_3$, $A = \mathbb{Z}/3\mathbb{Z}$ with trivial G-action, and $[f] \in H^3(G, A) = \mathbb{Z}/3\mathbb{Z}$ a non-trivial cohomology class. This corresponds to a 2-type with $\pi_1 = G$ and $\pi_2 = A$, which can be seen as $X = K(A, 2) \times_f K(G, 1)$.

Finite (small) resolutions are known for G and A. The spaces $K(A, 1)$ and $K(G, 1)$ have effective homology thanks to the previous algorithm. From the effective homology of $K(A, 1)$, the effective homology of the classifying space $W = K(A, 2)$ is built. From the effective homologies of $K(A, 2)$ and $K(G, 1)$, we construct the effective homology of $X = K(A, 2) \times_f K(G, 1)$.

Ana Romero

Basic Perturbation Lemma, effective homology and homology of 2-types

HPT Workshop 26 / 29
Let $G = C_3$, $A = \mathbb{Z}/3\mathbb{Z}$ with trivial G-action, and $[f] \in H^3(G, A) = \mathbb{Z}/3\mathbb{Z}$ a non-trivial cohomology class. This corresponds to a 2-type with $\pi_1 = G$ and $\pi_2 = A$, which can be seen as $X = K(A, 2) \times_f K(G, 1)$.

- Finite (small) resolutions are known for G and A.
Homology of 2-types

Let $G = C_3$, $A = \mathbb{Z}/3\mathbb{Z}$ with trivial G-action, and $[f] \in H^3(G, A) = \mathbb{Z}/3\mathbb{Z}$ a non-trivial cohomology class. This corresponds to a 2-type with $\pi_1 = G$ and $\pi_2 = A$, which can be seen as $X = K(A, 2) \times_f K(G, 1)$.

- Finite (small) resolutions are known for G and A.
- The spaces $K(G, 1)$ and $K(A, 1)$ have effective homology thanks to the previous algorithm.
Let \(G = C_3 \), \(A = \mathbb{Z}/3\mathbb{Z} \) with trivial \(G \)-action, and \([f] \in H^3(G, A) = \mathbb{Z}/3\mathbb{Z}\) a non-trivial cohomology class. This corresponds to a 2-type with \(\pi_1 = G \) and \(\pi_2 = A \), which can be seen as \(X = K(A, 2) \times_f K(G, 1) \).

- Finite (small) resolutions are known for \(G \) and \(A \).
- The spaces \(K(G, 1) \) and \(K(A, 1) \) have effective homology thanks to the previous algorithm.
- From the effective homology of \(K(A, 1) \), the effective homology of the classifying space \(\overline{W}K(A, 1) = K(A, 2) \) is built.
Let $G = C_3$, $A = \mathbb{Z}/3\mathbb{Z}$ with trivial G-action, and $[f] \in H^3(G, A) = \mathbb{Z}/3\mathbb{Z}$ a non-trivial cohomology class. This corresponds to a 2-type with $\pi_1 = G$ and $\pi_2 = A$, which can be seen as $X = K(A, 2) \times_f K(G, 1)$.

- Finite (small) resolutions are known for G and A.
- The spaces $K(G, 1)$ and $K(A, 1)$ have effective homology thanks to the previous algorithm.
- From the effective homology of $K(A, 1)$, the effective homology of the classifying space $\overline{WK}(A, 1) = K(A, 2)$ is built.
- From the effective homologies of $K(A, 2)$ and $K(G, 1)$, we construct the effective homology of $X = K(A, 2) \times_f K(G, 1)$.

Ana Romero
Basic Perturbation Lemma, effective homology and homology of 2-types
HPT Workshop 26 / 29
Homology of 2-types

Kenzo computes the homology groups of the 2-type:

```
> (setf K-C3-1 (K-Cm-n 3 1))
> (setf chml-clss (chml-clss K-C3-1 3))
> (setf tau (zp-whitehead 3 K-C3-1 chml-clss))
> (setf x (fibration-total tau))
> (efhm x)
```

Homology in dimension 5:
Component $\mathbb{Z}/3\mathbb{Z}$
---done---
Kenzo computes the homology groups of the 2-type:
Kenzo computes the homology groups of the 2-type:

```lisp
> (setf K-C3-1 (K-Cm-n 3 1))
[K261 Abelian-Simplicial-Group]
> (setf chml-clss (chml-clss K-C3-1 3))
[K308 Cohomology-Class on K288 of degree 3]
> (setf tau (zp-whitehead 3 K-C3-1 chml-clss))
[K323 Fibration K261 -> K309]
> (setf x (fibration-total tau))
[K329 Kan-Simplicial-Set]
> (efhm x)
[K541 Homotopy-Equivalence K329 <= K531 => K527]
> (homology x 5)
Homology in dimension 5:
Component Z/3Z
---done---
```
Conclusions

The Basic Perturbation Lemma is not basic. Combined with the effective homology method, it can be used for computing homology and homotopy groups of different spaces and other constructions of Algebraic Topology such as spectral sequences, persistent homology, homology of groups...

In particular, it allows us to determine homology of 2-types.
Conclusions

- The Basic Perturbation Lemma is not *basic*.
Conclusions

- The Basic Perturbation Lemma is not basic.

- Combined with the effective homology method, it can be used for computing homology and homotopy groups of different spaces.
Conclusions

- The Basic Perturbation Lemma is not *basic*.

- Combined with the effective homology method, it can be used for computing homology and homotopy groups of different spaces and other constructions of Algebraic Topology such as spectral sequences, persistent homology, homology of groups...
The Basic Perturbation Lemma is not *basic*.

Combined with the effective homology method, it can be used for computing homology and homotopy groups of different spaces and other constructions of Algebraic Topology such as spectral sequences, persistent homology, homology of groups. . .

In particular, it allows us to determine homology of 2-types.
Basic Perturbation Lemma and effective homology: application to the computation of homology of 2-types

Ana Romero

Universidad de La Rioja (Spain)

(Joint work with J. Rubio and F. Sergeraert)

Homological Perturbation Theory Workshop
Galway, December 2014