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Homotopies and discrete Morse theory can improve homology
computations.

Motivating 2-dimensional example
How do the shapes of the following planar graphs differ?

MacPherson: Persistent homology modules can capture shape.









Various thickenings of the first graph



β1 bar code for first graph



β1 bar code for second graph



To compute the homlogy of a space

X

we impose some cell structure, and consider

· · · → C2(X )
∂2→ C1(X )

∂1→ C0(X ) → 0

Cn(X ) = vector space, basis ↔ n-cells
∂n induced by cell boundaries
Hn(X ) = ker(∂n)/image(∂n+1)
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To compute the homlogy of a space

X X

we impose some cell structure, and consider

· · · → C2(X )
∂2→ C1(X )

∂1→ C0(X ) → 0

◮ Cn(X ) = vector space, basis ↔ n-cells

◮ ∂n induced by cell boundaries

◮ Hn(X ) = ker(∂n)/image(∂n+1)



Our representation of the thickened planar graph X =

has 45467 rectangular mesh faces, 91531 edges and 46060 vertices.
A naive computation of

H1(X , F) = F
5

is slow.



Homology is a homotopy invariant. Whitehead’s simple homotopy
collapses are handy for computing a homotopy retract Y ⊂ X .
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If X = Y ∪ en ∪ en−1 and Y ∩ en ≃ ∗ then X ≃ Y .

X Y

≃



For cubical subspaces of low-dimensional E
n the test Y ∩ en ≃ ∗

can be performed quickly.
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For cubical subspaces of low-dimensional E
n the test Y ∩ en ≃ ∗

can be performed quickly.

Mrozek et al.: use idea in Computer Assisted Proofs in Dynamics
software

For cubcial X ⊂ E
2 a cell e2 can be deleted without changing

homotopy type iff its neighbourhood is one of a storable list:

etc.
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Our thickened tree has retract

≃

with 1717 vertices, 2342 edges and 621 faces.

The retract Y has contractible subspace Z ⊂ Y with 1713
vertices, 2329 edges and 617 faces.

The computation

H1(X , Z) ∼= H1(C∗(Y )/C∗(Z )) = Z
5

takes a fraction of a second.



Contracting homotopies

From a homotopy retract Y ⊂ X we often need

◮ the chain inclusion ι∗ : C∗(Y ) →֒ C∗(X )

◮ its quasi-inverse φ∗ : C∗(X ) → C∗(Y )

◮ and a family of homomorphisms

hn : Cn(X ) → Cn+1(X ) (n ≥ 0)

satisfying

ιnφn − 1 = ∂n+1hn + hn−1∂n (h−1 = 0).



Contracting homotopies

From a homotopy retract Y ⊂ X we often need

◮ the chain inclusion ι∗ : C∗(Y ) →֒ C∗(X )

◮ its quasi-inverse φ∗ : C∗(X ) → C∗(Y )

◮ and a family of homomorphisms

hn : Cn(X ) → Cn+1(X ) (n ≥ 0)

satisfying

ιnφn − 1 = ∂n+1hn + hn−1∂n (h−1 = 0).

Forman’s Discrete Morse Theory is handy for computing hn (and
hence φn).
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arrows s → t where

◮ s, t are cells and any cell is involved in at most one arrow
◮ dim(t) = dim(s) + 1
◮ s lies in the boundary of t
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Continued example

≃



Continued example

≃

Theorem:
If X is a regular CW-space with discrete vector field then there is a
homotopy equivalence

X ≃ Y

where Y is a CW-space whose cells correspond to those of X not
involved in any arrow.



Contracting homotopy

For a discrete vector field arising from a homotopy retraction
Y ⊂ X we define the contracting homotopy

hn : Cn(X ) → Cn+1(X )

on generators en by

hn(e
n) =











0 if en is not a source
∑

en+1
i ∂n+1(

∑

en+1
i ) contains just one source

of dimension n



e1
h

1
(e

1
)



Group (co)homology

Definition: The (co)homology of a group G is the (co)homology of
X/G where X is any contractible space admitting a free G -action.
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Group (co)homology

Definition: The (co)homology of a group G is the (co)homology of
X/G where X is any contractible space admitting a free G -action.

Theorem: A CW-space X is contractible if πn(X
n+1) = 0 for

n ≥ 0.

Let’s illustrate for G = S3.

x = (1, 2), y = (1, 2, 3)

G = 〈x , y〉



X 0 = one free orbit of vertices

e0

x · e0

y · e0

y2 · e0

xy · e0

xy2 · e0



X 1 = X 0 ∪ enough free orbits of edges to ensure π0(X
1) = 0

e0

x · e0

y · e0

y2 · e0

xy · e0

xy2 · e0

e1
a

e1
b



Discrete vector field on X 1 ensures π0(X
1) = 0.

e0

x · e0

y · e0

y2 · e0

xy · e0

xy2 · e0

e1
a

e1
b



X 2 = X 1 ∪ enough free orbits of 2-cells to ensure π1(X
2) = 0



X 2 = X 1 ∪ enough free orbits of 2-cells to ensure π1(X
2) = 0

Discrete vector field on X 2

ensures that three orbits suffice.



X 3 = X 2 ∪ enough free orbits of 3-cells to ensure π2(X
3) = 0



X 3 = X 2 ∪ enough free orbits of 3-cells to ensure π2(X
3) = 0

Discrete vector field on X 3 ensures that four orbits suffice.
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Algorithm produces a small regular CW-space X with free G -action
and homotopy retraction X ≃ ∗.

C∗(X ) : · · · → C2(X )
∂2→ C1(X )

∂1→ C0(X ) → 0

is a complex of free ZG -modules with contracting homotopy

hn : Cn(X ) → Cn+1(X ) (n ≥ 0).

Contracting homotopy needed for induced chain mappings, cup
products, ...



A common element of choice:

Let X ′ be contractible. Choose a homomorphism fn+1 so that the

following diagram commutes.

Cn+1(X )

∂n+1

��

fn+1
//___ Cn+1(X

′)

��

Cn(X )
fn

// Cn(X
′)



A common element of choice:

Let X ′ be contractible. Choose a homomorphism fn+1 so that the

following diagram commutes.

Cn+1(X )

∂n+1

��

fn+1
//___ Cn+1(X

′)

��

Cn(X )
fn

// Cn(X
′)

Choice is algorithmic if some contracting homotopy
hn : Cn(X ) → Cn+1(X ) has already been specified for X ′.

fn+1(x) = hn( fn( ∂n+1(x) ) )



Theorem:
The Mathieu group M23 has trivial integral homology
Hn(M23, Z) = 0 in dimensions n = 1, 2, 3, 4.

Proof:
R.J. Milgram, “The cohomology of the Mathieu group M23”,J.
Group Theory 3 (2000), no. 1, 7–26.



Theorem:
The Mathieu group M23 has trivial integral homology
Hn(M23, Z) = 0 in dimensions n = 1, 2, 3, 4.

Proof:
R.J. Milgram, “The cohomology of the Mathieu group M23”,J.
Group Theory 3 (2000), no. 1, 7–26.

Computer Proof
gap> GroupHomology(MathieuGroup(23),2);

[ ]

gap> GroupHomology(MathieuGroup(23),3);

[ ]

gap> GroupHomology(MathieuGroup(23),4);

[ ]

gap> GroupHomology(MathieuGroup(23),5);

[ 7 ]
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◮ Each Sylow p-subgroup P is small. Compute a contractible
CW-space X(p) with free P-action.

◮ X 1
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Analysis of computer proof

◮ |M23| = 10200960 = 27.32.5.7.23

◮ Each Sylow p-subgroup P is small. Compute a contractible
CW-space X(p) with free P-action.

◮ X 1
(3) = X 1

(2) =

◮ C∗(X(p)) is a free ZP-resolution of Z with contracting
homotopy.



◮ There is a surjection Hn(P , Z) → Hn(G , Z)(p) with kernel
described (Cartan-Eilenberg) in terms of induced
homomorphisms

ιx : Hn(P , Z) → Hn(xPx−1, Z)

where x ranges over double coset representatives.



◮ There is a surjection Hn(P , Z) → Hn(G , Z)(p) with kernel
described (Cartan-Eilenberg) in terms of induced
homomorphisms

ιx : Hn(P , Z) → Hn(xPx−1, Z)

where x ranges over double coset representatives.

◮ ιx constructed using the contracting homotopy.



Conjecture
Any classifying space for an n generator Coxeter group G, whose

2-skeleton corresponds to the standard Coxeter presentation of G ,

must have at least
(n+k−1)!
(n−1)!k! k-dimensional cells.

[M. Salvetti, ”Cohomology of Coxeter groups”, 2002]
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The 3-cells in R are a subset of those in Salvetti’s complex. For
example:



gap> IdentityAmongRelationsDisplay(R,7);



H∗(G , F2) is a finitely presented commutative algebra for finite G .
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Theorem (King, Green, E): H∗(Co3, F2) has Poincaré series

P(t) =
f (t)

(1 − t8)(1 − t12)(1 − t14)(1 − t15)
,

where f (t) ∈ Z[t] is the monic polynomial of degree 45 with the
coefficients 1, 1, 1, 1, 2, 3, 3, 4, 4, 6, 7, 8, 9, 10, 10, 11, 13, 12,
14, 15, 13, 13, 15, 14, 12, 13, 11, 10, 10, 9, 8, 7, 6, 4, 4, 3, 3, 2,
1, 1, 1, 1.
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H∗(G , F2) is a finitely presented commutative algebra for finite G .

Theorem (King, Green, E): H∗(Co3, F2) has Poincaré series

P(t) =
f (t)

(1 − t8)(1 − t12)(1 − t14)(1 − t15)
,

where f (t) ∈ Z[t] is the monic polynomial of degree 45 with the
coefficients 1, 1, 1, 1, 2, 3, 3, 4, 4, 6, 7, 8, 9, 10, 10, 11, 13, 12,
14, 15, 13, 13, 15, 14, 12, 13, 11, 10, 10, 9, 8, 7, 6, 4, 4, 3, 3, 2,
1, 1, 1, 1.

H∗(Co3, F2) is Cohen–Macaulay, having Krull dimension 4 and
depth 4.

Proof: Require:

◮ Free resolution for Syl2(Co3)

◮ and completion criteria!



Persistent homology of groups

Group surjections
G։G ′

correspond to classifying space inclusions

B(G ) = X/G →֒ B(G ) = X ′/G ′ .



The lower central series

L1(G ) = G , L2(G ) = [G ,G ], . . . , Li+1 = [G ,Li (G )]
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The lower central series

L1(G ) = G , L2(G ) = [G ,G ], . . . , Li+1 = [G ,Li (G )]

corresponds to a series of inclusions

· · · →֒ B(
G

L4(G )
) →֒ B(

G

L3(G )
) →֒ B(

G

L2(G )
) →֒ ∗

Definition:
We denote the persistent homology module of these inclusions by

H∗∗
∗ (G , F) = {H ij

n (G , F)}n≥0,i<j .



H∗∗
1 (D32) H∗∗

2 (D32) H∗∗
3 (D32)

H∗∗
1 (Q32) H∗∗

2 (Q32) H∗∗
3 (Q32)
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order ≤ 81 into 227 classes with maximum class size equal to 7.
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Proposition:

The invariant H∗∗
∗ (G , Fp) partitions the 366 prime-power groups of

order ≤ 81 into 227 classes with maximum class size equal to 7.

Proposition: For a p-group G of nilpotency class c

1. H∗∗
1 (G , Fp) determines rank of G

= number of bars in β1 barcode

2. H∗∗
2 (G , Fp) determines rank of Lc (G )

= number of dots in 2nd column of β2 barcode

3. All β2 bars start in the first column.

2 & 3 essentially due to Eick and Feichtenschlager.



A group G of order pn and nilpotency class c has coclass

r = n − c .



A group G of order pn and nilpotency class c has coclass

r = n − c .

The coclass graph G(p, r) has as vertices the p-groups of coclass
r . Two vertices G ,Q are connected by an edge if

Q ∼= G/Lc (G ) with |Lc(G )| = p .

D2k Q2k SD2k

G(2, 1)



Theorem (J. Carlson):

The groups G ∈ G(2, r) give rise to just finitely many
non-isomorphic cohomology rings H∗(G , F2).



Theorem (J. Carlson):

The groups G ∈ G(2, r) give rise to just finitely many
non-isomorphic cohomology rings H∗(G , F2).

Question:

Does (persistent) homology reflect the structure of coclass trees in
a way that would allow us to compute the homology of large
p-groups by determining their coclass tree and calculating
homology of the initial period of the tree?



A coclass 2 tree and its mainline β3 bar code



The persistent part of mainline bar codes can be computed from
the homology of the p-adic space group arising as the inverse limit
of the mainline groups.


